cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001449 Binomial coefficients binomial(5n,n).

Original entry on oeis.org

1, 5, 45, 455, 4845, 53130, 593775, 6724520, 76904685, 886163135, 10272278170, 119653565850, 1399358844975, 16421073515280, 193253756909160, 2280012686716080, 26958221130508525
Offset: 0

Views

Author

Keywords

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

  • Magma
    [ Binomial(5*n,n): n in [0..100] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Maple
    f := n->(5*n)!/((4*n)!*(n)!);
  • Mathematica
    Table[ Binomial[5n, n], {n, 0, 18} ]
  • Maxima
    B(x):=sum(binomial(5*n,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
    
  • PARI
    a(n) = binomial(5*n, n) \\ Altug Alkan, Oct 05 2015

Formula

a(n) = (5*n)!/((4*n)!*(n)!).
a(n) is asymptotic to c*(3125/256)^n/sqrt(n), with c = sqrt(5/(8*Pi)) = 0.44603102903819277863474159... - Benoit Cloitre, Jan 23 2008
a(n) = C(5*n-1,n-1)*C(25*n^2,2)/(3*n*C(5*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002294. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1/4,1/2,3/4; 3125*x/256).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1/4,1/2,3/4,1; 3125*x/256). (End)
a(n) = hypergeom([-4*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
From Peter Bala, Feb 20 2022: (Start)
4*n(4*n-1)*(4*n-2)*(4*n-3)*a(n) = 5*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 4*A(x))^4 + 3125*x*A(x)^5 = 0.
Sum_{n >= 1} a(n)*( x*(4*x + 5)^4/(3125*(1 + x)^5) )^n = x. (End)
From Peter Bala, Oct 17 2024: (Start)
Let G******(x) denote the o.g.f. of sequence A******.
For n >= 1 , a(n) = (5/2) * [x^n] G006013(x)^n.
For n >= 1, a(n) = [x^n] (1 + x)^(5*n) = (5/4) * [x^n] (1/(1 - x))^(4*n) = (5/3) * [x^n] G000108(x)^(3*n) = (5/2) * [x^n] G001764(x)^(2*n) = 5 * [x^n] G002293(x)^n.
a(n) = 5 * [x^n] (1 - G006632(x))^(-n) = (5/2) * [x^n] (1 - x*G006013(x))^(-2*n) = (5/3) * [x^n] (1 - x*G000108(x))^(-3*n) (apply Concrete Mathematics, equation 5.60, p. 201). (End)