A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).
1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0
Examples
The triangle a(n, k), n >= 0, k = 0..n, begins: 1 1 1 1 3 3 1 6 15 15 1 10 45 105 105 1 15 105 420 945 945 1 21 210 1260 4725 10395 10395 1 28 378 3150 17325 62370 135135 135135 1 36 630 6930 51975 270270 945945 2027025 2027025 1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425 ... And the first few Bessel polynomials are: y_0(x) = 1, y_1(x) = x + 1, y_2(x) = 3*x^2 + 3*x + 1, y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1, y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1, y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1, ... Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Alexander Alldridge, Joachim Hilgert, and Martin R. Zirnbauer, Chevalley's restriction theorem for reductive symmetric superpairs, arXiv:0812.3530 [math.RT], 2008-2009; J. Alg. 323 (4) (2010) 1159-1185 doi:10.1016/j.jalgebra.2009.11.014, Remark 3.17.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Juan Antonio Barcelo and Anthony Carbery, On the magnitudes of compact sets in Euclidean spaces, arXiv preprint arXiv:1507.02502 [math.MG], 2015.
- François Bergeron, Philippe Flajolet, and Bruno Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
- Alexander W. Boldyreff, Decomposition of Rational Fractions into Partial Fractions, Nat. Math. Mag. 17 (6) (1943), 261-267; coefficients (m)N(r).
- Alexander Burstein and Toufik Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
- Roudy El Haddad, Repeated Integration and Explicit Formula for the n-th Integral of x^m*(ln x)^m', arXiv:2102.11723 [math.GM], 2021.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 9.
- Emil Grosswald, Bessel Polynomials: Recurrence Relations, Lecture Notes Math. vol. 698, 1978, p. 18.
- Cameron Jakub and Mihai Nica, Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization, arXiv:2302.09712 [stat.ML], 2023.
- Taekyun Kim, and Dae San Kim, Identities involving Bessel polynomials arising from linear differential equations, arXiv:1602.04106 [math.NT], 2016.
- H. L. Krall and Orrin Frink, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials, Discrete Math., 153 (1996), 213-227.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Shi-Mei Ma, Toufik Mansour, Jean Yeh, and Yeong-Nan Yeh, Normal ordered grammars, arXiv:2404.15119 [math.CO], 2024. See p. 11.
- Guillermo Navas-Palencia, On the computation of the cumulative distribution function of the Normal Inverse Gaussian distribution, arXiv:2502.16015 [math.NA], 2025. See p. 25.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- John Riordan, Notes to N. J. A. Sloane, Jul. 1968
- Florian Stober, Average case considerations for MergeInsertion, Master's Thesis, University of Stuttgart, Institute of Formal Methods in Computer Science, 2018.
- Florian Stober and Armin Weiß, On the Average Case of MergeInsertion, arXiv:1905.09656 [cs.DS], 2019.
- Laszlo A. Székely, Pál L. Erdős, and M. A. Steel, The combinatorics of evolutionary trees, Séminaire Lotharingien de Combinatoire, B28e (1992), 15 pp.
- Juan G. Triana, Bessel polynomials by context-free grammars (Polinomios de Bessel mediante gramáticas independientes del contexto), Bistua, Univ. de Pamplona (Colombia, 2024) Vol 22, No. 2. See p. 3.
- Jonas Wahl, Traces on diagram algebras II: Centralizer algebras of easy groups and new variations of the Young graph, arXiv:2009.08181 [math.RT], 2020.
- Eric Weisstein's World of Mathematics, Modified Spherical Bessel Function of the Second Kind
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Programs
-
Haskell
a001498 n k = a001498_tabl !! n !! k a001498_row n = a001498_tabl !! n a001498_tabl = map reverse a001497_tabl -- Reinhard Zumkeller, Jul 11 2014
-
Magma
/* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
-
Maple
Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end; # Alternative: T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k: for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018 T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 02 2023
-
Mathematica
max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
-
PARI
{T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
-
PARI
A001497_ser(N,t='t) = { my(x='x+O('x^(N+2))); serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x)); }; concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
Formula
a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025
Comments