A001631 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).
0, 0, 1, 0, 1, 2, 4, 7, 14, 27, 52, 100, 193, 372, 717, 1382, 2664, 5135, 9898, 19079, 36776, 70888, 136641, 263384, 507689, 978602, 1886316, 3635991, 7008598, 13509507, 26040412, 50194508, 96753025, 186497452, 359485397, 692930382, 1335666256, 2574579487
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Matthias Beck and Neville Robbins, Variations on a Generating Function Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, arXiv:1403.0665 [math.NT], 2014.
- Petros Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, Journal of Integer Sequences, 19 (2016), #16.8.2.
- W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6-22.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1).
Crossrefs
Programs
-
Magma
I:=[0,0,1,0]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
-
Maple
A001631:=(-1+z)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation a:= n-> (Matrix([[0,-1,2,-1]]). Matrix(4, (i,j)-> `if`(i=j-1 or j=1, 1, 0))^n)[1,1]: seq(a(n), n=0..35); # Alois P. Heinz, Aug 01 2008
-
Mathematica
LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 0}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *) CoefficientList[Series[((-1+x) x^2)/(-1+x+x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Oct 21 2011 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 08 2016, simplified by M. F. Hasler, Apr 20 2018
-
PARI
x='x+O('x^30); concat([0,0], Vec(((x-1)*x^2)/(x^4+x^3+x^2+x-1))) \\ G. C. Greubel, Jan 09 2018
Formula
G.f.: ((x-1)*x^2)/(x^4+x^3+x^2+x-1). - Harvey P. Dale, Oct 21 2011
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 31 2000
Edited by M. F. Hasler, Apr 20 2018
Comments