A001688 4th forward differences of factorial numbers A000142.
9, 53, 362, 2790, 24024, 229080, 2399760, 27422640, 339696000, 4536362880, 64988179200, 994447238400, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- A. van Heemert, Cyclic permutations with sequences and related problems, J. Reine Angew. Math., 198 (1957), 56-72.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
Table[(n^4 + 6*n^3 + 17*n^2 + 20*n + 9) n!, {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *) Differences[Range[0,30]!,4] (* Harvey P. Dale, Jun 06 2017 *)
-
PARI
a(n)=if(n<0,0,n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9))
Formula
For n>=0 a(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9). - Benoit Cloitre, Jun 10 2004
G.f.: -log(-x+1)+1+2/(x-1)^4*x*(4-3*x+2*x^2). - Simon Plouffe, Master's Thesis, Uqam 1992
E.g.f.: (9 + 8*x + 6*x^2 + x^4)/(1 - x)^5. - Ilya Gutkovskiy, Jan 20 2017
a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) with a(0) = 9 and a(1) = 53. Cf. A095177. - Peter Bala, Jul 22 2021