A001690 Non-Fibonacci numbers.
4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011.
- H. W. Gould, Non-Fibonacci numbers, Fib. Quart., 3 (1965), pp. 177-183.
Programs
-
Haskell
a001690 n = a001690_list !! (n-1) a001690_list = filter ((== 0) . a010056) [0..] -- Reinhard Zumkeller, Oct 10 2013
-
Magma
phi:= (1+Sqrt(5))/2; [Floor(n + Log(phi, Sqrt(5)*(Log(phi, Sqrt(5)*n) + n) - 5 + 3/n) - 2 ): n in [2..100]]; // G. C. Greubel, May 26 2019
-
Maple
a:=proc(n) floor(-LambertW(-1, -1/5*ln(1/2+1/2*5^(1/2))*5^(1/2) /((1/2+1/2*5^(1/2))^(n-3/2))) /ln(1/2+1/2*5^(1/2))+1/2) end: seq(a(n), n=1..69); # Simon Plouffe, Nov 29 2017 # alternative isA000045 := proc(n) for k from 0 do if A000045(k) = n then return true; elif A000045(k) > n then return false; end if; end do: end proc: A001690 := proc(n) option remember; if n = 1 then 4 ; else for a from procname(n-1)+1 do if not isA000045(a) then return a; end if; end do: end if; end proc: seq(A001690(n),n=1..100) ; # R. J. Mathar, Feb 01 2019 # third Maple program: q:= n-> (t-> issqr(t+4) or issqr(t-4))(5*n^2): remove(q, [$1..100])[]; # Alois P. Heinz, Jun 05 2019
-
Mathematica
Complement[Range[Fibonacci[a = 12]], Fibonacci[Range[a]]] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *) a[n_] := With[{phi = (1 + Sqrt[5])/2}, Floor[1/2 - LambertW[-1, -Log[phi]/(Sqrt[5] phi^(n - 3/2))]/Log[phi]]]; Table [a[n], {n, 1, 70}] (* Peter Luschny, Nov 30 2017 *) Table[Floor[n +Log[GoldenRatio, Sqrt[5]*(Log[GoldenRatio, Sqrt[5]*n] +n) -5 +3/n] -2], {n, 2, 100}] (* G. C. Greubel, May 26 2019 *)
-
PARI
lgg(x)=log(x)/log((sqrt(5)+1)/2); a(n)=n++;floor(n+lgg(sqrt(5)*(lgg(sqrt(5)*n)+n)-5+3/n)-2); vector(66,n,a(n)) /* Joerg Arndt, May 14 2011 */
-
PARI
lower=3;upper=5; for(i=4,20,for(n=lower+1,upper-1,print1(n", ")); [lower,upper]=[upper,lower+upper]) \\ Charles R Greathouse IV, Nov 19 2013
-
Python
def f(n): a=1 b=2 c=3 while n>0: a=b b=c c=a+b n-=(c-b-1) n+=(c-b-1) return (b+n) for i in range(1,1001): print(str(i)+" "+str(f(i))) # Indranil Ghosh, Dec 22 2016
-
Sage
[floor( n + log( sqrt(5)*(log(sqrt(5)*n, golden_ratio) + n) - 5 + 3/n , golden_ratio) - 2 ) for n in (2..100)] # G. C. Greubel, May 26 2019
Formula
a(n-1) = floor(n + lgg(sqrt(5)*(lgg(sqrt(5)*n)+n) - 5 + 3/n) - 2) where lgg(x) = log(x)/log((sqrt(5)+1)/2), given by Farhi. - Jonathan Vos Post, May 05 2011
a(n) ~ n. - Charles R Greathouse IV, Nov 06 2014
a(n) = floor(1/2 - LambertW(-1, -log(phi)/(sqrt(5)*phi^(n - 3/2)))/log(phi)) with phi = (1 + sqrt(5))/2 [Nicolas Normand (Nantes)]. - Simon Plouffe, Nov 29 2017 [abs removed by Peter Luschny, Nov 30 2017]
Comments