A001697 a(n+1) = a(n)(a(0) + ... + a(n)).
1, 1, 2, 8, 96, 10368, 108615168, 11798392572168192, 139202068568601556987554268864512, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Cerkan, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Daniel Duverney, Takeshi Kurosawa, Iekata Shiokawa, Transformation formulas of finite sums into continued fractions, arXiv:1912.12565 [math.NT], 2019.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
Crossrefs
Programs
-
Haskell
a001697 n = a001697_list !! n a001697_list = 1 : 1 : f [1,1] where f xs@(x:_) = y : f (y : xs) where y = x * sum xs -- Reinhard Zumkeller, Apr 29 2013
-
Magma
[n le 2 select 1 else Self(n-1)^2*(1+1/Self(n-2)): n in [1..12]]; // Vincenzo Librandi, Nov 25 2015
-
Mathematica
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jul 02 2013 *) nxt[{t_,a_}]:={t+t*a,t*a}; Transpose[NestList[nxt,{1,1},10]][[2]] (* Harvey P. Dale, Jan 24 2016 *)
-
PARI
a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)))
Formula
a(n) ~ c^(2^n), where c = 1.3352454783981919948826893254756974184778316104856161827213437094446034867599... . - Vaclav Kotesovec, May 21 2015
Extensions
Additional comments from Michael Somos, May 19 2000
Comments