cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001701 Generalized Stirling numbers.

Original entry on oeis.org

1, 6, 26, 71, 155, 295, 511, 826, 1266, 1860, 2640, 3641, 4901, 6461, 8365, 10660, 13396, 16626, 20406, 24795, 29855, 35651, 42251, 49726, 58150, 67600, 78156, 89901, 102921, 117305, 133145, 150536, 169576, 190366, 213010, 237615, 264291, 293151, 324311
Offset: 1

Views

Author

Keywords

Comments

For n>3, a(n-2) gives the number of bounded regions created when the pairwise perpendicular bisectors of n points divide the Euclidean plane into a maximum of A308305(n) regions. This is also equivalent to the number of regions lost from A308305(n) when n>3 points move from maximal position to a circle. - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 26 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A059302(n+2) + 1, n>1. Partial sums of A005564.
For n>1, a(n) = A145324(n+1,3).

Programs

  • GAP
    Concatenation([1],List([2..40],n->n*(n-1)*(3*n^2+17*n+26)/24)); # Muniru A Asiru, Sep 29 2018
    
  • Magma
    [1] cat [n*(n-1)*(3*n^2 + 17*n + 26)/24: n in [2..40]]; // Vincenzo Librandi, Sep 30 2018
    
  • Maple
    A001701 := proc(n)
        if n = 1 then
            1;
        else
            n*(n-1)*(3*n^2+17*n+26)/24 ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    f[k_] := k + 1; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[2, t[n]]; Join[{1}, Table[a[n], {n, 2, 30}]] (* Clark Kimberling, Dec 31 2011 *)
    Join[{1}, Table[n (n - 1) (3 n^2 + 17 n + 26) / 24, {n, 2, 40}]] (* Vincenzo Librandi, Sep 30 2018 *)
    CoefficientList[Series[(-1 - x - 6 x^2 + 9 x^3 - 5 x^4 + x^5)/(-1 + x)^5, {x, 0, 30}], x] (* Stefano Spezia, Sep 30 2018 *)
    Prepend[Table[Coefficient[Product[x+j, {j,2,k}], x, k-3], {k,3,40}],1] (* or *) Prepend[LinearRecurrence[{5, -10, 10, -5, 1}, {6, 26, 71, 155, 295}, 40],1] (*Robert A. Russell, Oct 04 2018 *)
  • PARI
    Vec(x*(-1-x-6*x^2+9*x^3-5*x^4+x^5)/(-1+x)^5+O(x^30)) \\ Stefano Spezia, Sep 30 2018

Formula

a(n) = n*(n-1)*(3n^2 + 17n + 26)/24, n > 1.
G.f.: z*(-1-z-6*z^2+9*z^3-5*z^4+z^5)/(z-1)^5. - Simon Plouffe in his 1992 dissertation
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i) * Product_{j=0..k-1} (-a - j), then a(n) = f(n,n-2,2), for n >= 2. - Milan Janjic, Dec 20 2008
For n>1, a(n) = A308305(n+2) - (n^2 + 3n + 2). - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 20 2019
E.g.f.: x + (1/24)*exp(x)*x^2*(72 + 32*x + 3*x^2). - Stefano Spezia, Sep 07 2019
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Colin Barker, Jul 08 2020