A001804 a(n) = n! * C(n,2).
2, 18, 144, 1200, 10800, 105840, 1128960, 13063680, 163296000, 2195424000, 31614105600, 485707622400, 7933224499200, 137305808640000, 2510734786560000, 48373490221056000, 979563176976384000, 20801312169910272000, 462251381553561600000
Offset: 2
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for sequences related to factorial numbers
Programs
-
Maple
seq(n!*binomial(n,2),n=2..20); # Emeric Deutsch, Oct 01 2006 a:=n->sum((n-j)*n!, j=1..n): seq(a(n), n=2..22); # Zerinvary Lajos, Apr 29 2007 restart: G(x):=x^2/(1-x)^3: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=2..16); # Zerinvary Lajos, Apr 01 2009
-
Mathematica
Table[n! Binomial[n, 2], {n, 2, 20}] (* T. D. Noe, Aug 10 2012 *)
-
PARI
a(n) = n!*binomial(n, 2); \\ Michel Marcus, Mar 14 2016
Formula
E.g.f.: x^2/(1-x)^3. - Geoffrey Critzer, Aug 19 2012
a(n) = 2 * A001809(n).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi/2)*n^(n+5/2)/exp(n).
Sum_{n>=2} 1/a(n) = 2*(3 - exp(1)) = 0.563436343081909529... (End)
Comments