A001810 a(n) = n!*n*(n-1)*(n-2)/36.
0, 0, 0, 1, 16, 200, 2400, 29400, 376320, 5080320, 72576000, 1097712000, 17563392000, 296821324800, 5288816332800, 99165306240000, 1952793722880000, 40311241850880000, 870722823979008000, 19645683716026368000, 462251381553561600000, 11325158848062259200000
Offset: 0
Keywords
Examples
G.f. = x^3 + 16*x^4 + 200*x^5 + 2400*x^6 + 29400*x^7 + 376320*x^8 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Index entries for sequences related to Laguerre polynomials.
Programs
-
Magma
[Factorial(n)*n*(n-1)*(n-2)/36: n in [0..20]]; // G. C. Greubel, May 16 2018
-
Maple
[seq(n!*n*(n-1)*(n-2)/36,n=0..30)]; with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card
=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=0..20) ; # Zerinvary Lajos, Feb 07 2008 -
Mathematica
Table[n! n*(n-1)*(n-2)/36, {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
-
PARI
for(n=0,20, print1(n!*n*(n-1)*(n-2)/36, ", ")) \\ G. C. Greubel, May 16 2018
-
Sage
[factorial(m) * binomial(m, 3) / 6 for m in range(22)] # Zerinvary Lajos, Jul 05 2008
Formula
a(n) = -A021009(n, 3), n >= 0. a(n) = ((n!/3!)^2)/(n-3)!, n >= 3.
E.g.f.: x^3/(3!*(1-x)^4).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n) = (-1)^(n-1) * f(n,3,-4), (n >= 3). - Milan Janjic, Mar 01 2009
a(n) = Sum_{k>0} k * A263771(n,k). - Alois P. Heinz, Oct 27 2015
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 9*(2*e + gamma - Ei(1) - 4), where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = 63*(gamma - Ei(-1)) - 36*(1/e + 1), where Ei(-1) = -A099285. (End)
Extensions
Edited by N. J. A. Sloane, Apr 12 2014
Comments