A001934 Expansion of 1/theta_4(q)^2 in powers of q.
1, 4, 12, 32, 76, 168, 352, 704, 1356, 2532, 4600, 8160, 14176, 24168, 40512, 66880, 108876, 174984, 277932, 436640, 679032, 1046016, 1597088, 2418240, 3632992, 5417708, 8022840, 11802176, 17252928, 25070568, 36223424, 52053760, 74414412
Offset: 0
References
- A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
- B. Kim, Overpartition pairs modulo powers of 2, Discrete Math., 311 (2011), 835-840.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Jeremy Lovejoy, Overpartition pairs, Annales de l'institut Fourier, vol.56, no.3, p.781-794, 2006.
Programs
-
Julia
# JacobiTheta4 is defined in A002448. A001934List(len) = JacobiTheta4(len, -2) A001934List(33) |> println # Peter Luschny, Mar 12 2018
-
Maple
mul((1+x^n)^2/(1-x^n)^2,n=1..256);
-
Mathematica
CoefficientList[Series[1/EllipticTheta[4, 0, q]^2, {q, 0, 32}], q] (* Jean-François Alcover, Jul 18 2011 *) nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *) QP = QPochhammer; s = QP[q^2]^2/QP[q]^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
-
PARI
my(N=33, x='x+O('x^N)); Vec(prod(i=1, N, (1+x^i)^2/(1-x^i)^2))
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A)^4, n))} /* Michael Somos, Feb 09 2006 */
Formula
G.f.: Product ( 1 - x^k )^{-c(k)}, c(k) = 4, 2, 4, 2, 4, 2, ....
G.f.: Product{i>=1} (1+x^i)^2/(1-x^i)^2. - Jon Perry, Apr 04 2004
Expansion of eta(q^2)^2/eta(q)^4 in powers of q, where eta(x)=prod(n>=1,1-q^n).
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(15/4) * n^(5/4)) * (1 - 15/(8*Pi*sqrt(2*n)) + 105/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 17 2015, extended Jan 22 2017
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018
The g.f. A(q^2) = 1/(F(q)*F(-q)), where F(q) = theta_3(q) = Sum_{n = -oo..oo} q^(n^2) is the g.f. of A000122. Cf. A002513. - Peter Bala, Sep 26 2023
Extensions
More terms from James Sellers, Sep 08 2000
Edited by N. J. A. Sloane, May 13 2008 to remove an incorrect g.f.
Comments