A287933
Coefficients in expansion of 1/E_8.
Original entry on oeis.org
1, -480, 168480, -52199040, 15119446560, -4198347132480, 1132514464199040, -299116847254053120, 77742157641008378400, -19951615350261029163360, 5068304275307482667436480, -1276700988345016720650917760
Offset: 0
A289636
Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).
Original entry on oeis.org
-240, 53280, -12288960, 2835808320, -654403831200, 151013228757120, -34848505552897920, 8041801037378486400, -1855762905734676483120, 428244362959801779806400, -98823634118413525094402880, 22804995243537595828606337280
Offset: 1
a(1) = 1 * A110163(1) = -240,
a(2) = 1 * A110163(1) + 2 * A110163(2) = 53280,
a(3) = 1 * A110163(1) + 3 * A110163(3) = -12288960.
-
nmax = 20; Rest[CoefficientList[Series[-240*x*Sum[k*DivisorSigma[3, k]*x^(k-1), {k, 1, nmax}]/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[-D[Ei[4], x]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A288816
Coefficients in expansion of 1/E_2.
Original entry on oeis.org
1, 24, 648, 17376, 466152, 12505104, 335466144, 8999325120, 241418862504, 6476381979576, 173737557697968, 4660740989265312, 125030574027131424, 3354111390776151504, 89978497733627940672, 2413792838444465745216, 64753202305891291798824
Offset: 0
A289565
Coefficients in expansion of 1/E_2^(1/2).
Original entry on oeis.org
1, 12, 252, 5664, 133356, 3224952, 79387488, 1978996416, 49797787788, 1262193008556, 32177428972632, 824182154521056, 21193138994244960, 546767126418119352, 14146104826919725632, 366887630982365262144, 9535791498480146879436
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289566
Coefficients in expansion of 1/E_4^(1/2).
Original entry on oeis.org
1, -120, 20520, -3934560, 793510440, -164694615120, 34824089129760, -7460017581785280, 1613575314347164200, -351613291994820018840, 77073167391611232305520, -16975579813113940564868640, 3753822590560913900129106720
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289567
Coefficients in expansion of 1/E_6^(1/2).
Original entry on oeis.org
1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12), this sequence (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A285836
Coefficients in expansion of 1/E_10.
Original entry on oeis.org
1, 264, 205128, 95104416, 54329698632, 28308006715824, 15339873507244704, 8172566140980183360, 4385988806258507934024, 2346434028637391065282536, 1257009611855633134427201328, 672999598306502464042506285792
Offset: 0
A287964
Coefficients in expansion of 1/E_14.
Original entry on oeis.org
1, 24, 197208, 47715936, 42451725912, 18015200386704, 10924205579505504, 5511557851517150400, 3039496830486964153944, 1604976096786795234999096, 865212805864755380070382608, 461861254217266216545148291872
Offset: 0
-
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[1/Ei[14] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A289247
Coefficients in expansion of 1/E_4^(1/8).
Original entry on oeis.org
1, -30, 3780, -616440, 111056910, -21135698280, 4165203862440, -840914061328320, 172810940671692900, -35998781800053352710, 7579904611028433074280, -1609957152292592382408360, 344417407415742189796786680, -74127324674775434904036905640
Offset: 0
E_4^(k/8):
A001943 (k=-8),
A289566 (k=-4),
A295815 (k=-2), this sequence (k=-1),
A108091 (k=1),
A289307 (k=2),
A289308 (k=3),
A289292 (k=4),
A289309 (k=5),
A289318 (k=6),
A289319 (k=7),
A004009 (k=8).
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289568
Coefficients in expansion of 1/E_10^(1/2).
Original entry on oeis.org
1, 132, 93852, 35163744, 18119136156, 8462089683432, 4234179302847648, 2096050696254014016, 1057219212439789539228, 534730176137991079392036, 272470142855167873443179352, 139363825115618499934478625696
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
Showing 1-10 of 14 results.