A002023 a(n) = 6*4^n.
6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984
Offset: 0
References
- Irving Kaplansky, Integers Uniquely Represented by Certain Ternary Forms, in "The Mathematics of Paul Erdős I", Ronald. L. Graham and Jaroslav Nešetřil (Eds.), Springer, 1997, pp. 86 - 94.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 17, 26.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Domination Number
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
- Index entries for linear recurrences with constant coefficients, signature (4).
Programs
-
Magma
[6*4^n: n in [0..30]]; // Vincenzo Librandi, May 16 2011
-
Mathematica
6*4^Range[0, 100] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *) Table[6 4^n, {n, 0, 20}] (* Eric W. Weisstein, Aug 17 2017 *) LinearRecurrence[{4}, {6}, 20] (* Eric W. Weisstein, Aug 17 2017 *) CoefficientList[Series[6/(1 - 4 x), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *) NestList[4#&,6,30] (* Harvey P. Dale, Mar 17 2024 *)
-
PARI
a(n)=6<<(2*n) \\ Charles R Greathouse IV, Apr 17 2012
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1) for n > 0, a(0)=6.
G.f.: 6/(1-4*x). (End)
a(n) = 3*A004171(n). - R. J. Mathar, Mar 08 2011
From Peter M. Chema, Mar 03 2017: (Start)
E.g.f.: 6*exp(4*x). - G. C. Greubel, Aug 17 2017
Comments