cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A356867 For n >= 1, write n = 3^m + k, where m >= 0 is the greatest power of 3 <= n, and k is in the range 0 <= k < 3^(m+1) - 3^m, then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest prime multiple p*a(k), p != 3, that is not already a term.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 10, 8, 9, 7, 14, 15, 25, 20, 12, 50, 16, 18, 35, 28, 30, 125, 40, 24, 100, 32, 27, 11, 22, 21, 55, 44, 42, 70, 56, 45, 49, 98, 75, 175, 140, 60, 250, 80, 36, 245, 196, 150, 625, 200, 48, 500, 64, 54, 77, 110, 105, 275, 88, 84, 350, 112, 90, 343
Offset: 1

Views

Author

David James Sycamore, Sep 01 2022

Keywords

Comments

Any prime p may be used to generate a sequence D(p) of this kind. The present sequence is D(3), and D(2) is the Doudna sequence, A005940.
Conjectured to be a permutation of the positive integers in which the primes appear in order.
From Antti Karttunen, Sep 16 2023: (Start)
The conjecture is true: Sequence is a permutation of natural numbers. By definition it is injective, and the surjectivity is guaranteed by the fact that there are infinitely many such n > k encountered by the greedy algorithm that a(n) will be a multiple of a(k), and "the smallest prime multiple" condition guarantees that all multiples of a(k) will eventually appear. That the primes and A100484 appear in order follows from the formulas a(3^m + 1) = prime(m+2), and a(3^m + 2) = 2*prime(m+2).
If the base-3 representation of n-1 has the base-3 representation of k-1 as its suffix, then a(n) is a multiple of a(k). For example, A007089(16-1) = 120, and A007089(43-1) = 1120, thus the former is the suffix of the latter, and a(16) = 50 indeed divides a(43) = 250.
(End)

Examples

			n=1=3^0+0 so a(1)=1. n=2=3^0+1 so k=1 and a(2)=2. Similarly a(3)=3 and a(9)=9.
n=10=3^2+1, therefore k=1 and a(1)=1 so a(10)=1*7=7 (since 2 and 5 have already occurred).
		

Crossrefs

Cf. A007089, A007949, A011655, A048473, A100484, A053735, A364958 (fixed points), A365390 (inverse permutation), A365424, A365459, A365462 [= a(n)-n], A365463 [= gcd(a(n),n)], A365464, A365465, A365717 [= A348717(a(1+n))], A365719 [= A046523(a(1+n))], A365721 [= omega(a(1+n))], A365722 [= bigomega(a(1+n))].
Cf. also A005940, A364611, A364628 for variants D(2), D(5) and D(7).

Programs

Formula

a(3^m + 1) = prime(m+2) for m >= 1.
Conjectures from Jianing Song, Nov 23 2022: (Start)
(1) a(3^m+2) = 2*prime(m+2) for m >= 2. - [The conjecture is true because a(2) = 2 and 3^m + 2 < 3^(1+m) + (3^m) + 1 for all m - Antti Karttunen, Sep 16 2023]
(2) For n > m >= 1, a(3^n+3^m+1) = prime(m+2)^2 for n = m+1; prime(n+2)*prime(m+2)^2 for n >= m+2.
(3) For n > m >= 1, a(3^n+3^m+2) = 4*prime(n+2) for n >= 3, m = 1; 2*prime(m+2)^2 for n = m+1, m >= 2; 2*prime(m+2)*prime(m+3) for n = m+2, m >= 2; 2*prime(n+2)*prime(m+2)^2 for n >= m+3, m >= 2. (End)
From Antti Karttunen, Sep 17 2023: (Start)
If A053735(n) = 1, then a(n) = n, otherwise a(n) = A365424(n) * a(A365459(n)).
For all n >= 1, A007949(a(n)) = A007949(n) and a(3*n) = 3*a(n).
For n >= 1, a(3^n - 1) = 2^(2n - 1), a(A048473(n)) = 2^(2*(n-1)).
These are conjectures so far:
For n >= 1, a(3^n - 2) = 10^(n-1).
For n >= 2, a(3^n - 3) = A002023(n-2) = 6*4^(n-2).
(End)

Extensions

More terms from Michael De Vlieger, Sep 01 2022

A164346 a(n) = 3 * 4^n.

Original entry on oeis.org

3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

Klaus Brockhaus, Aug 13 2009

Keywords

Comments

Binomial transform of A000244 without initial 1.
Second binomial transform of A007283.
Third binomial transform of A010701.
Inverse binomial transform of A005053 without initial 1.
First differences of A024036. - Omar E. Pol, Feb 16 2013

Crossrefs

Cf. A000302 (powers of 4), A000244 (powers of 3), A007283 (3*2^n), A010701 (all 3's), A005053, A002001, A096045, A140660 (3*4^n+1), A002023 (6*4^n), A002063(9*4^n), A056120, A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 3.
G.f.: 3/(1-4*x).
a(n) = A002001(n+1). a(n) = A096045(n)+2. a(n) = A140660(n)-1.
a(n) = A002023(n)/2. a(n) = A002063(n)/3. a(n) = A056120(n+3)/9.
Apparently a(n) = A084509(n+3)/2.
a(n) = A110594(n+1), n>1. - R. J. Mathar, Aug 17 2009
a(n) = 3*A000302(n). - Omar E. Pol, Feb 18 2013
a(n) = A000079(2*n) + A000079(2*n+1). - M. F. Hasler, Jul 28 2015
E.g.f.: 3*exp(4*x). - G. C. Greubel, Sep 15 2017

A274728 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-1,-2) (-2,-1) or (-1,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 24, 16, 4, 41, 96, 68, 48, 8, 122, 384, 296, 260, 144, 16, 365, 1536, 1300, 1632, 1040, 432, 32, 1094, 6144, 5728, 10368, 9308, 4132, 1296, 64, 3281, 24576, 25268, 66132, 84948, 52912, 16524, 3888, 128, 9842, 98304, 111512, 421904, 771300
Offset: 1

Views

Author

R. H. Hardin, Jul 03 2016

Keywords

Comments

Table starts
...1.....2.......5.......14.........41..........122...........365
...1.....6......24.......96........384.........1536..........6144
...2....16......68......296.......1300.........5728.........25268
...4....48.....260.....1632......10368........66132........421904
...8...144....1040.....9308......84948.......771300.......7016284
..16...432....4132....52912.....687248......8960464.....116633012
..32..1296...16524...301784....5634776....105328812....1980677448
..64..3888...66088..1721528...45990340...1237030912...33415073716
.128.11664..264332..9816048..375845052..14505195904..564905405336
.256.34992.1057316.55981988.3070055916.170291855288.9541460598408

Examples

			Some solutions for n=4 k=4
..0..1..1..2. .0..1..2..0. .0..1..2..2. .0..1..2..1. .0..1..2..1
..1..0..2..0. .1..0..1..2. .1..0..1..0. .1..0..1..2. .1..0..1..0
..0..2..0..2. .0..1..0..1. .2..1..0..1. .2..1..0..1. .0..1..0..1
..2..0..2..1. .1..2..2..2. .1..2..1..2. .1..2..1..0. .1..2..1..2
		

Crossrefs

Column 1 is A000079(n-2).
Row 1 is A007051(n-1).
Row 2 is A002023(n-2).
Row 3 is A235643(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) for n>3
k=3: a(n) = 3*a(n-1) +4*a(n-2) +a(n-3) -3*a(n-4) -4*a(n-5) for n>7
k=4: [order 8] for n>12
k=5: [order 15] for n>19
k=6: [order 30] for n>35
k=7: [order 59] for n>65
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 4*a(n-1) for n>2
n=3: a(n) = 6*a(n-1) -7*a(n-2) for n>3
n=4: a(n) = 8*a(n-1) -10*a(n-2) -4*a(n-3) +13*a(n-4) -7*a(n-5) +a(n-6) for n>7
n=5: [order 7] for n>9
n=6: [order 18] for n>20
n=7: [order 30] for n>34

A084509 Number of ground-state 3-ball juggling sequences of period n.

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984
Offset: 0

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Comments

This sequence counts the length n asynchronic site swaps given in A084501/A084502.
Equals row sums of triangle A145463. - Gary W. Adamson, Oct 11 2008
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4, 1>5} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the first element is the largest. - Sergey Kitaev, Dec 11 2020
a(n) is the number of permutations p[1]..p[n] of {1,...,n} with p[j+1] < p[j]+4 for 0 < j < n. - Don Knuth, Apr 25 2022

References

  • B. Polster, The Mathematics of Juggling, Springer-Verlag, 2003, p. 48.

Crossrefs

First differences of A084508.
INVERT transform of A084519.

Programs

  • Maple
    A084509 := n -> `if`((n<4),n!,6*(4^(n-3)));
    INVERT([seq(A084519(n),n=1..12)]);
  • Mathematica
    LinearRecurrence[{4},{1,2,6},30] (* Harvey P. Dale, Aug 23 2018 *)

Formula

a(n) = n! for n <= 4, a(n) = 6*4^(n-3) = A002023(n-3) for n >= 3.
G.f.: 1 + x*(1 - 2*x - 2*x^2)/(1 - 4*x). - Philippe Deléham, Aug 16 2005

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 11 2020

A233155 T(n,k) = Number of n X k 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

3, 6, 9, 12, 24, 27, 24, 72, 96, 81, 48, 216, 432, 384, 243, 96, 648, 1944, 2592, 1536, 729, 192, 1944, 8856, 17496, 15552, 6144, 2187, 384, 5832, 40392, 121176, 157464, 93312, 24576, 6561, 768, 17496, 184248, 842616, 1658232, 1417176, 559872, 98304, 19683
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Table starts
.....3.......6........12.........24...........48.............96
.....9......24........72........216..........648...........1944
....27......96.......432.......1944.........8856..........40392
....81.....384......2592......17496.......121176.........842616
...243....1536.....15552.....157464......1658232.......17587584
...729....6144.....93312....1417176.....22692312......367125912
..2187...24576....559872...12754584....310536504.....7663517136
..6561...98304...3359232..114791256...4249585944...159971190624
.19683..393216..20155392.1033121304..58154132088..3339300422232
.59049.1572864.120932352.9298091736.795819434328.69705848287656

Examples

			Some solutions for n=4, k=4
..1..2..2..1....1..2..2..1....0..0..0..0....1..2..1..0....2..1..0..1
..2..1..2..2....2..1..0..1....1..0..1..2....1..0..0..0....0..1..0..1
..2..1..2..1....2..1..0..1....1..0..1..0....0..0..1..0....2..1..2..1
..0..1..2..2....0..1..0..0....1..0..0..1....0..0..0..0....2..1..0..0
		

Crossrefs

Column 1 is A000244.
Column 2 is A002023(n-1).
Column 3 is 2*A000400.
Column 4 is 3*A055275.
Row 1 is A003945.
Row 2 is A005051(n-1) for n>1.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 4*a(n-1).
k=3: a(n) = 6*a(n-1).
k=4: a(n) = 9*a(n-1).
k=5: a(n) = 15*a(n-1) -18*a(n-2).
k=6: a(n) = 25*a(n-1) -90*a(n-2) +81*a(n-3).
k=7: a(n) = 42*a(n-1) -351*a(n-2) +972*a(n-3) -810*a(n-4).
Empirical for row n:
n=1: a(n) = 2*a(n-1).
n=2: a(n) = 3*a(n-1) for n>2.
n=3: a(n) = 5*a(n-1) -2*a(n-2) for n>4.
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3) for n>7.
n=5: [order 7] for n>11.
n=6: [order 9] for n>15.
n=7: [order 27] for n>33.

A164908 a(n) = (3*4^n - 0^n)/2.

Original entry on oeis.org

1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 0

Views

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Binomial transform of A164907. Inverse binomial transform of A057651.
Partial sums are in A083420.
Decimal representations of the n-th iterations of elementary cellular automata rules 14, 46, 142 and 174 generate this sequence (see A266298 and A266299). - Karl V. Keller, Jr., Aug 31 2021

Crossrefs

Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1+2*x)/(1-4*x).
a(n) = floor(6*4^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
E.g.f.: (3*exp(4*x) - 1)/2. - Elmo R. Oliveira, Mar 31 2025

A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 234, 384, 496, 936, 1536, 1638, 6144, 8128, 24576, 42588, 98304, 393216, 1089270, 1572864, 6291456, 25165824, 33550336, 100663296, 115048440, 402653184, 1185125760, 1610612736
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k).
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Intersection of A175200 and A336552.
Cf. A000396, A002023, A326145 (subsequences).
Cf. also A336641 for a similar construction.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); };

A140529 a(n) = 6*4^n - 1.

Original entry on oeis.org

5, 23, 95, 383, 1535, 6143, 24575, 98303, 393215, 1572863, 6291455, 25165823, 100663295, 402653183, 1610612735, 6442450943, 25769803775, 103079215103, 412316860415, 1649267441663, 6597069766655, 26388279066623, 105553116266495
Offset: 0

Views

Author

Paul Curtz, Jul 03 2008

Keywords

Crossrefs

Cf. A028894.

Programs

Formula

a(n) = 4*a(n-1) + 3, a(0)=5.
a(n) = A002023(n) - 1 = A000302(n+1) + A083420(n).
G.f.: ( 5-2*x ) / ( (4*x-1)*(x-1) ). - R. J. Mathar, Jul 08 2022

A203984 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

6, 24, 24, 96, 144, 96, 384, 864, 864, 384, 1536, 5184, 7776, 5184, 1536, 6144, 31104, 69984, 69984, 31104, 6144, 24576, 186624, 629856, 956448, 629856, 186624, 24576, 98304, 1119744, 5668704, 13071456, 13071456, 5668704, 1119744, 98304, 393216
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Table starts
.....6......24........96.........384..........1536............6144
....24.....144.......864........5184.........31104..........186624
....96.....864......7776.......69984........629856.........5668704
...384....5184.....69984......956448......13071456.......178855776
..1536...31104....629856....13071456.....271918944......5671161216
..6144..186624...5668704...178855776....5671161216....180709558848
.24576.1119744..51018336..2447270496..118333620576...5764846339584
.98304.6718464.459165024.33489653472.2469841766784.184042295652096

Examples

			Some solutions for n=4 k=3
..0..0..0..0....0..0..0..0....0..0..1..1....0..1..0..0....0..1..2..1
..1..1..1..2....1..2..1..2....1..2..2..0....2..2..2..1....2..1..2..0
..0..0..0..2....1..2..1..0....0..0..1..1....0..0..0..0....2..0..2..1
..1..1..1..1....0..2..1..2....1..2..2..0....1..1..1..1....1..1..2..1
..0..2..2..2....1..2..1..2....1..0..1..1....2..2..2..2....2..0..0..1
		

Crossrefs

Column 1 is A002023(n-1)
Column 2 is A067411(n+1)

Formula

Empirical for column k:
k=1: a(n) = 6*4^(n-1)
k=2: a(n) = 4*6^n
k=3: a(n) = 96*9^(n-1)
k=4: a(n) = 15*a(n-1) -270*a(n-3) +324*a(n-4)
k=5: a(n) = 25*a(n-1) -45*a(n-2) -963*a(n-3) +2025*a(n-4) +3645*a(n-5) -6561*a(n-6)
k=6: (order 15 recurrence)
k=7: (order 45 recurrence)

A247640 Number of ON cells after n generations of "Odd-Rule" cellular automaton on hexagonal lattice based on 6-celled neighborhood.

Original entry on oeis.org

1, 6, 6, 24, 6, 36, 24, 96, 6, 36, 36, 144, 24, 144, 96, 384, 6, 36, 36, 144, 36, 216, 144, 576, 24, 144, 144, 576, 96, 576, 384, 1536, 6, 36, 36, 144, 36, 216, 144, 576, 36, 216, 216, 864, 144, 864, 576, 2304, 24, 144, 144, 576, 144, 864
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2014

Keywords

Comments

The neighborhood of a cell consists of the six surrounding cells (but not the cell itself). A cell is ON at generation n iff an odd number of its neighbors were ON at the previous generation. We start with one ON cell.
This is the Run Length Transform of the sequence 1, 6, 24, 96, 384, 1536, 6144, 24576, ... (almost certainly A164908, or 1 followed by A002023).
It appears that this is also the sequence corresponding to the odd-rule cellular automaton defined by OddRule 356 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 26 2015

Crossrefs

Programs

  • Maple
    C := f->`if`(type(f,`+`),nops(f),1);
    f := 1/x+x+1/y+y+1/(x*y)+x*y;
    g := n->expand(f^n) mod 2;
    [seq(C(g(n)),n=0..100)];
  • Mathematica
    A247640[n_] := Total[CellularAutomaton[{42, {2, {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 2]; Array[A247640, 54, 0] (* JungHwan Min, Sep 06 2016 *)
    A247640L[n_] := Total[#, 2] & /@ CellularAutomaton[{42, {2, {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, n]; A247640L[53] (* JungHwan Min, Sep 06 2016 *)

Formula

a(n) = number of terms in expansion of f^n mod 2, where f = 1/x+x+1/y+y+1/(x*y)+x*y (mod 2);
Showing 1-10 of 19 results. Next