A002062 a(n) = Fibonacci(n) + n.
0, 2, 3, 5, 7, 10, 14, 20, 29, 43, 65, 100, 156, 246, 391, 625, 1003, 1614, 2602, 4200, 6785, 10967, 17733, 28680, 46392, 75050, 121419, 196445, 317839, 514258, 832070, 1346300, 2178341, 3524611, 5702921, 9227500, 14930388, 24157854, 39088207, 63246025
Offset: 0
References
- R. Honsberger, Ingenuity in Math., Random House, 1970, p. 96.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Hung Viet Chu, A Note on the Fibonacci Sequence and Schreier-type Sets, arXiv:2205.14260 [math.CO], 2022.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
List([0..50], n-> Fibonacci(n)+n); # G. C. Greubel, Jul 09 2019
-
Haskell
a002062 n = a000045 n + toInteger n a002062_list = 0 : 2 : 3 : (map (subtract 1) $ zipWith (-) (map (* 2) $ drop 2 a002062_list) a002062_list) -- Reinhard Zumkeller, Oct 03 2012
-
Magma
[Fibonacci(n)+n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
-
Maple
a:= n-> combinat[fibonacci](n)+n: seq(a(n), n=0..50); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
Table[Fibonacci[n]+n,{n,0,50}] (* Harvey P. Dale, Jul 27 2011 *)
-
MuPAD
numlib::fibonacci(n)+n $ n = 0..50; // Zerinvary Lajos, May 08 2008
-
PARI
a(n)=fibonacci(n) + n \\ Charles R Greathouse IV, Oct 03 2016
-
Sage
[fibonacci(n)+n for n in (0..50)] # G. C. Greubel, Jul 09 2019
Formula
G.f.: x*(-2+3*x) / ( (x^2+x-1)*(x-1)^2 ). - Simon Plouffe in his 1992 dissertation
From Wolfdieter Lang: (Start)
Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= -3, (F(-k)=(-1)^(k+1)*F(k));
G.f.: x*(2-3*x)/((1-x-x^2)*(1-x)^2). (End)
a(n) = 2*a(n-1) - a(n-3) - 1. - Kieren MacMillan, Nov 08 2008
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Emmanuel Vantieghem, May 19 2016
E.g.f.: 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5) + x*exp(x). - Ilya Gutkovskiy, Apr 11 2017
Comments