cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002062 a(n) = Fibonacci(n) + n.

Original entry on oeis.org

0, 2, 3, 5, 7, 10, 14, 20, 29, 43, 65, 100, 156, 246, 391, 625, 1003, 1614, 2602, 4200, 6785, 10967, 17733, 28680, 46392, 75050, 121419, 196445, 317839, 514258, 832070, 1346300, 2178341, 3524611, 5702921, 9227500, 14930388, 24157854, 39088207, 63246025
Offset: 0

Views

Author

Keywords

Comments

Let A006355(n+4)_0%20-%20A066982(n+1)_1%20(conjecture);%20(a(n))%20=%20em%5BK*%20%5Dseq(%20.25'i%20-%20.25'j%20-%20.25'k%20-%20.25i'%20+%20.25j'%20-%20.75k'%20-%20.25'ii'%20-%20.25'jj'%20-%20.25'kk'%20-%20.25'ij'%20-%20.25'ik'%20-%20.75'ji'%20+%20.25'jk'%20-%20.25'ki'%20-%20.75'kj'%20+%20.75e),%20apart%20from%20initial%20term.%20-%20_Creighton%20Dement">x indicate the sequence offset. Then a(n+2)_0 = A006355(n+4)_0 - A066982(n+1)_1 (conjecture); (a(n)) = em[K* ]seq( .25'i - .25'j - .25'k - .25i' + .25j' - .75k' - .25'ii' - .25'jj' - .25'kk' - .25'ij' - .25'ik' - .75'ji' + .25'jk' - .25'ki' - .75'kj' + .75e), apart from initial term. - _Creighton Dement, Nov 19 2004

References

  • R. Honsberger, Ingenuity in Math., Random House, 1970, p. 96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..50], n-> Fibonacci(n)+n); # G. C. Greubel, Jul 09 2019
  • Haskell
    a002062 n = a000045 n + toInteger n
    a002062_list = 0 : 2 : 3 : (map (subtract 1) $
       zipWith (-) (map (* 2) $ drop 2 a002062_list) a002062_list)
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [Fibonacci(n)+n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
    
  • Maple
    a:= n-> combinat[fibonacci](n)+n: seq(a(n), n=0..50); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    Table[Fibonacci[n]+n,{n,0,50}] (* Harvey P. Dale, Jul 27 2011 *)
  • MuPAD
    numlib::fibonacci(n)+n $ n = 0..50; // Zerinvary Lajos, May 08 2008
    
  • PARI
    a(n)=fibonacci(n) + n \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [fibonacci(n)+n for n in (0..50)] # G. C. Greubel, Jul 09 2019
    

Formula

G.f.: x*(-2+3*x) / ( (x^2+x-1)*(x-1)^2 ). - Simon Plouffe in his 1992 dissertation
From Wolfdieter Lang: (Start)
Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= -3, (F(-k)=(-1)^(k+1)*F(k));
G.f.: x*(2-3*x)/((1-x-x^2)*(1-x)^2). (End)
a(n) = 2*a(n-1) - a(n-3) - 1. - Kieren MacMillan, Nov 08 2008
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Emmanuel Vantieghem, May 19 2016
E.g.f.: 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5) + x*exp(x). - Ilya Gutkovskiy, Apr 11 2017