A002093 Highly abundant numbers: numbers k such that sigma(k) > sigma(m) for all m < k.
1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980, 2100
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata.
- D. Fischer, Proof 2, 6, 12 divides a(n) greater than 3, 20, 630 resp.
- S. S. Pillai, On numbers analogous to highly composite numbers of Ramanujan, Rajah Sir Annamalai Chettiar Commemoration Volume, ed. Dr. B. V. Narayanaswamy Naidu, Annamalai University, 1941, pp. 697-704.
- S. S. Pillai, Highly abundant numbers, Bulletin of the Calcutta Mathematical Society, Vol. 35, No. 1 (1943), pp. 141-156.
- N. J. A. Sloane, Transforms (The RECORDS transform returns both the high-water marks and the places where they occur).
- Wikipedia, Highly abundant number
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1) to a(N) best:= 0: count:= 0: for n from 1 while count < N do s:= numtheory:-sigma(n); if s > best then best:= s; count:= count+1; A[count]:= n; fi od: seq(A[i],i=1..N);# Robert Israel, Jan 20 2016
-
Mathematica
a={}; k=0; Do[s=DivisorSigma[1,n]; If[s>k, AppendTo[a,n]; k=s], {n,3000}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 25 2008 *) DeleteDuplicates[Table[{n,DivisorSigma[1,n]},{n,100}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 14 2022 *)
-
PARI
for(n=1,1000,if(sum(i=1,n-1,sign(sigma(n)-sigma(i))) == n-1,print1(n,",")))
Extensions
Better description from N. J. A. Sloane, Apr 15 1997
More terms from Jud McCranie, Jul 04 2000
Comments