cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 79 results. Next

A128699 Highly abundant numbers that are not superabundant, i.e., the complement of A004394 w.r.t. A002093.

Original entry on oeis.org

3, 8, 10, 16, 18, 20, 30, 42, 72, 84, 90, 96, 108, 144, 168, 210, 216, 288, 300, 336, 420, 480, 504, 540, 600, 630, 660, 960, 1008, 1080, 1200, 1440, 1560, 1620, 1800, 1920, 1980, 2100, 2160, 2340, 2400, 2880, 3024, 3120, 3240, 3360, 3600, 3780, 3960, 4200
Offset: 1

Views

Author

Ant King, Mar 28 2007

Keywords

Comments

In 1944, Alaoglu and Erdős conjectured that this sequence was infinite and this was proved to be true by Nicolas in 1969.

Examples

			The sequence of highly abundant numbers begins 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20 and the sequence of superabundant numbers begins 1, 2, 4, 6, 12, 24. Because 10 is the third number which is in the first sequence but not in the second, it follows that a(3)=10.
		

Crossrefs

Programs

  • Mathematica
    habdata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10000}]]; data1=Flatten[Position[habdata1,#,1,1]&/@Union[habdata1]];sabdata2=FoldList[Max,1,Table[DivisorSigma[1,n]/n,{n,2,10000}]]; data2=Flatten[Position[sabdata2,#,1,1]&/@Union[sabdata2]];sabdata2=FoldList[Max,1,Table[DivisorSigma[1,n]/n,{n,2,10000}]]; Complement[data1,data2]

Formula

The highly abundant numbers are those integers for which sigma(n) > sigma(m) for all m < n (A002093) and the superabundant numbers are those integers for which sigma(n)/n > sigma(m)/m for all m < n (A004394).

A128702 Highly abundant numbers (A002093) that are not Harshad numbers (A005349).

Original entry on oeis.org

16, 96, 168, 47880, 85680, 95760, 388080, 458640, 526680, 609840, 637560, 776160, 887040, 917280, 942480, 1219680, 1244880, 1607760, 1774080, 2439360, 3880800, 5266800, 5569200, 6098400, 7761600, 9424800, 12196800, 17907120, 20900880
Offset: 1

Views

Author

Ant King, Mar 28 2007

Keywords

Comments

All superabundant numbers (A004394), colossally abundant numbers (A004490), highly composite numbers (A002182) and superior highly composite numbers (A002201) are Harshad numbers. However, this is not true of the highly abundant numbers (A002093) and there are 32 exceptions in the 394 highly abundant numbers less than 50 million.
The previous comment is erroneous. The first superabundant number that is not a Harshad number is A004394(105) = 149602080797769600. The first highly composite number that is not a Harshad number is A002182(61) = 245044800. For all exceptions I found, the sum of digits is a power of 3. Although the first 60000 terms of the colossally abundant numbers and the superior highly composite numbers are Harshad numbers, I am not aware of a proof that all terms are Harshad numbers. There may be large counterexamples. [T. D. Noe, Oct 27 2009]

Examples

			The third highly abundant number that is not a Harshad number is 168. So a(3)=168.
		

Crossrefs

Programs

  • Mathematica
    hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10^6}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];HarshadQ[k_]:=If[IntegerQ[ k/(Plus @@ IntegerDigits[ k ])],True,False];Select[data1,!HarshadQ[ # ] &]

Formula

The highly abundant numbers (A002093) are those values of n for which sigma(n)>sigma(m) for all mA000203(n). Harshad numbers (A005349) are divisible by the sum of their digits.

Extensions

a(16)-a(29) from Donovan Johnson, May 09 2009

A228944 Number of ways to write highly composite numbers (A002182(n)) as the difference of two highly abundant numbers (A002093), both <= 2*A002182(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 8, 10, 12, 13, 13, 14, 14, 11, 11, 13, 15, 16, 15, 17, 17, 18, 19, 16, 17, 19, 18, 19, 18, 24, 20, 29, 28, 23, 24, 24, 26, 26, 23, 22
Offset: 1

Views

Author

Jaycob Coleman, Sep 08 2013

Keywords

Comments

Conjecture: this sequence is always positive, analogous to sequence A202472 for strong Goldbach conjecture. - Jaycob Coleman, Sep 08 2013

Examples

			a(4)=3, since 6=12-6=10-4=8-2.
		

Crossrefs

Cf. A202472.

A349608 a(n) is the number of divisors of the n-th highly abundant number (A002093).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 6, 5, 6, 6, 8, 8, 9, 8, 10, 12, 12, 12, 12, 12, 12, 16, 15, 16, 18, 16, 16, 20, 18, 18, 20, 24, 24, 24, 24, 24, 24, 24, 24, 30, 32, 28, 30, 32, 30, 36, 36, 32, 30, 40, 36, 32, 36, 36, 40, 36, 36, 48, 42, 40, 40, 40, 48, 45, 48, 48, 48, 48
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2021

Keywords

Examples

			a(1) = A000005(A002093(1)) = A000005(1) = 1.
a(10) = A000005(A002093(10)) = A000005(18) = 6.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; sm = 0; Do[s = DivisorSigma[1, n]; If[s > sm, sm = s; AppendTo[seq, DivisorSigma[0, n]]], {n, 1, 10^4}]; seq

Formula

a(n) = A000005(A002093(n)).

A181310 Highly abundant numbers (A002093) whose largest prime factor has power greater than 1.

Original entry on oeis.org

4, 8, 16, 18, 36, 72, 108, 144, 216, 288, 300, 600, 1200, 1800, 2400, 3600, 5880, 7200, 8820, 11760, 17640, 35280, 52920, 70560, 105840, 211680, 609840, 914760, 1219680, 2439360, 6098400, 9369360, 12196800, 46846800, 6248642400, 12497284800
Offset: 1

Views

Author

T. D. Noe, Oct 13 2010

Keywords

Comments

According to Alaoglu and Erdos (page 465), with a strong assumption about the distribution of prime numbers, they can prove that this sequence is finite.

A228942 Number of decompositions of highly composite numbers (A002182) into unordered sums of two highly abundant numbers (A002093).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 7, 8, 11, 12, 12, 12, 14, 14, 12, 12, 13, 15, 17, 15, 17, 17, 18, 15, 15, 15, 17, 17, 20, 19, 25, 26, 28, 24, 25, 19, 19, 24, 20, 19, 18
Offset: 1

Views

Author

Jaycob Coleman, Sep 08 2013

Keywords

Comments

Conjecture: this sequence is always positive, analogous to sequence A045917 for the strong Goldbach conjecture. - Jaycob Coleman, Sep 08 2013

Examples

			a(6)=4, since 24=4+20=6+18=8+16=12+12.
		

Crossrefs

Cf. A045917.

A308574 Numbers between a pair of consecutive highly abundant numbers (A002093) having the same sum of divisors as the lesser one.

Original entry on oeis.org

672, 2016, 69300, 146160, 207900, 1627920, 8316000, 9828000, 38253600, 60147360, 105814800, 158004000, 726818400, 95935039200, 191870078400, 2206505901600, 3463953292800, 3800093497200, 4413011803200, 7600186994400, 8826023606400
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2019

Keywords

Comments

Define "largely abundant numbers" to be numbers k such that sigma(k) >= sigma(j) for all j < k. This sequence gives all the largely abundant numbers that are not highly abundant numbers.
Analogous to A244353 as A002093 is analogous to A002182.
No more terms below 10^10.
a(22) > 10^13. - Giovanni Resta, Jul 02 2019

Examples

			672 is in the sequence since 660 < 672 < 720, (660, 720) are a pair of consecutive highly abundant numbers, and sigma(672) = sigma(660) = 2016.
		

Crossrefs

Programs

  • Mathematica
    s={}; sm=0; Do[s1=DivisorSigma[1,n]; If[s1==sm, AppendTo[s,n]]; If[s1>sm, sm=s1], {n,1,10^5}]; s

Extensions

a(14)-a(21) from Giovanni Resta, Jul 02 2019

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A005153 Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252
Offset: 1

Views

Author

Keywords

Comments

Equivalently, positive integers m such that every number k <= m is a sum of distinct divisors of m.
2^r is a member for all r as every number < = sigma(2^r) = 2^(r+1)-1 is a sum of a distinct subset of divisors {1, 2, 2^2, ..., 2^m}. - Amarnath Murthy, Apr 23 2004
Also, numbers m such that A030057(m) > m. This is a consequence of the following theorem (due to Stewart), found at the McLeman link: An integer m >= 2 with factorization Product_{i=1..k} p_i^e_i with the p_i in ascending order is practical if and only if p_1 = 2 and, for 1 < i <= k, p_i <= sigma(Product_{j < i} p_j^e_j) + 1. - Franklin T. Adams-Watters, Nov 09 2006
Practical numbers first appear in Srinivasan's short paper, which contains terms up to 200. Let m be a practical number. He states that (1) if m>2, m is a multiple of 4 or 6; (2) sigma(m) >= 2*m-1 (A103288); and (3) 2^t*m is practical. He also states that highly composite numbers (A002182), perfect numbers (A000396), and primorial numbers (A002110) are practical. - T. D. Noe, Apr 02 2010
Conjecture: The sequence a(n)^(1/n) (n=3,4,...) is strictly decreasing to the limit 1. - Zhi-Wei Sun, Jan 12 2013
Conjecture: For any positive rational number r, there are finitely many pairwise distinct practical numbers q(1)..q(k) such that r = Sum_{j=1..k} 1/q(j). For example, 2 = 1/1 + 1/2 + 1/4 + 1/6 + 1/12 with 1, 2, 4, 6 and 12 all practical, and 10/11 = 1/2 + 1/4 + 1/8 + 1/48 + 1/132 + 1/176 with 2, 4, 8, 48, 132 and 176 all practical. - Zhi-Wei Sun, Sep 12 2015
Analogous with the {1 union primes} (A008578), practical numbers form a complete sequence. This is because it contains all powers of 2 as a subsequence. - Frank M Jackson, Jun 21 2016
Sun's 2015 conjecture on the existence of Egyptian fractions with practical denominators for any positive rational number is true. See the link "Egyptian fractions with practical denominators". - David Eppstein, Nov 20 2016
Conjecture: if all divisors of m are 1 = d_1 < d_2 < ... < d_k = m, then m is practical if and only if d_(i+1)/d_i <= 2 for 1 <= i <= k-1. - Jianing Song, Jul 18 2018
The above conjecture is incorrect. The smallest counterexample is 78 (for which one of these quotients is 13/6; see A174973). m is practical if and only if the divisors of m form a complete subsequence. See Wikipedia links. - Frank M Jackson, Jul 25 2018
Reply to the comment above: Yes, and now I can show the opposite: The largest value of d_(i+1)/d_i is not bounded for practical numbers. Note that sigma(n)/n is not bounded for primorials, and primorials are practical numbers. For any constant c >= 2, let k be a practical number such that sigma(k)/k > 2c. By Bertrand's postulate there exists some prime p such that c*k < p < 2c*k < sigma(k), so k*p is a practical number with consecutive divisors k and p where p/k > c. For example, for k = 78 we have 13/6 > 2, and for 97380 we have 541/180 > 3. - Jianing Song, Jan 05 2019
Erdős (1950) and Erdős and Loxton (1979) proved that the asymptotic density of practical numbers is 0. - Amiram Eldar, Feb 13 2021
Let P(x) denote the number of practical numbers up to x. P(x) has order of magnitude x/log(x) (see Saias 1997). Moreover, we have P(x) = c*x/log(x) + O(x/(log(x))^2), where c = 1.33607... (see Weingartner 2015, 2020 and Remark 1 of Pomerance & Weingartner 2021). As a result, a(n) = k*n*log(n*log(n)) + O(n), where k = 1/c = 0.74846... - Andreas Weingartner, Jun 26 2021
From Hal M. Switkay, Dec 22 2022: (Start)
Every number of least prime signature (A025487) is practical, thereby including two classes of number mentioned in Noe's comment. This follows from Stewart's characterization of practical numbers, mentioned in Adams-Watters's comment, combined with Bertrand's postulate (there is a prime between every natural number and its double, inclusive).
Also, the first condition in Stewart's characterization (p_1 = 2) is equivalent to the second condition with index i = 1, given that an empty product is equal to 1. (End)
Conjecture: every odd number, beginning with 3, is the sum of a prime number and a practical number. Note that this conjecture occupies the space between the unproven Goldbach conjecture and the theorem that every even number, beginning with 2, is the sum of two practical numbers (Melfi's 1996 proof of Margenstern's conjecture). - Hal M. Switkay, Jan 28 2023

References

  • H. Heller, Mathematical Buds, Vol. 1, Chap. 2, pp. 10-22, Mu Alpha Theta OK, 1978.
  • Malcolm R. Heyworth, More on Panarithmic Numbers, New Zealand Math. Mag., Vol. 17 (1980), pp. 28-34 [ ISSN 0549-0510 ].
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 146-147.

Crossrefs

Subsequence of A103288.
Cf. A002093, A007620 (second definition), A030057, A033630, A119348, A174533, A174973.
Cf. A027750.

Programs

  • Haskell
    a005153 n = a005153_list !! (n-1)
    a005153_list = filter (\x -> all (p $ a027750_row x) [1..x]) [1..]
       where p _  0 = True
             p [] _ = False
             p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m)
    -- Reinhard Zumkeller, Feb 23 2014, Oct 27 2011
    
  • Maple
    isA005153 := proc(n)
        local ifs,pprod,p,i ;
        if n = 1 then
            return true;
        elif type(n,'odd') then
            return false ;
        end if;
        # not using ifactors here directly because no guarantee primes are sorted...
        ifs := ifactors(n)[2] ;
        pprod := 1;
        for p in sort(numtheory[factorset](n) ) do
            for i in ifs do
                if op(1,i) = p then
                    if p > 2 and p > 1+numtheory[sigma](pprod) then
                        return false ;
                    end if;
                    pprod := pprod*p^op(2,i) ;
                end if;
            end do:
        end do:
        return true ;
    end proc:
    for n from 1 to 300 do
        if isA005153(n)  then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2023
  • Mathematica
    PracticalQ[n_] := Module[{f,p,e,prod=1,ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p,e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1,prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i,Length[p]}]; ok]]]; Select[Range[200], PracticalQ] (* T. D. Noe, Apr 02 2010 *)
  • PARI
    is_A005153(n)=bittest(n,0) && return(n==1); my(P=1); n && !for(i=2,#n=factor(n)~,n[1,i]>1+(P*=sigma(n[1,i-1]^n[2,i-1])) && return) \\ M. F. Hasler, Jan 13 2013
    
  • Python
    from sympy import factorint
    def is_A005153(n):
        if n & 1: return n == 1
        f = factorint(n) ; P = (2 << f.pop(2)) - 1
        for p in f: # factorint must have prime factors in increasing order
            if p > 1 + P: return
            P *= p**(f[p]+1)//(p-1)
        return True # M. F. Hasler, Jan 02 2023
    
  • Python
    from sympy import divisors;from more_itertools import powerset
    [i for i in range(1,253) if (lambda x:len(set(map(sum,powerset(x))))>sum(x))(divisors(i))] # Nicholas Stefan Georgescu, May 20 2023

Formula

Weingartner proves that a(n) ~ k*n log n, strengthening an earlier result of Saias. In particular, a(n) = k*n log n + O(n log log n). - Charles R Greathouse IV, May 10 2013
More precisely, a(n) = k*n*log(n*log(n)) + O(n), where k = 0.74846... (see comments). - Andreas Weingartner, Jun 26 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
Erroneous comment removed by T. D. Noe, Nov 14 2010
Definition changed to exclude n = 0 explicitly by M. F. Hasler, Jan 19 2013

A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1

Views

Author

Keywords

Comments

Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - Keith Briggs, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019

References

  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
  • J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).

Programs

Formula

a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021

Extensions

Name edited by Peter Munn, Mar 13 2019
Showing 1-10 of 79 results. Next