A002109 Hyperfactorials: Product_{k = 1..n} k^k.
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..36
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
- blackpenredpen, What is a Hyperfactorial? Youtube video (2018).
- CreativeMathProblems, A beautiful integral | Raabe's integral, Youtube Video (2021).
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
- Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
- Jean-Christophe Pain, Bounds on the p-adic valuation of the factorial, hyperfactorial and superfactorial, arXiv:2408.00353 [math.NT], 2024. See p. 5.
- Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see Section 5.
- László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
- Eric Weisstein's World of Mathematics, Hyperfactorial.
- Eric Weisstein's World of Mathematics, K-Function.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
Crossrefs
Programs
-
Haskell
a002109 n = a002109_list !! n a002109_list = scanl1 (*) a000312_list -- Reinhard Zumkeller, Jul 07 2012
-
Maple
f := proc(n) local k; mul(k^k,k=1..n); end; A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1)); seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
-
Mathematica
Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *) Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *) Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
-
PARI
a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
-
PARI
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
-
Python
A002109 = [1] for n in range(1, 10): A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
-
Sage
a = lambda n: prod(falling_factorial(n,k) for k in (1..n)) [a(n) for n in (0..10)] # Peter Luschny, Nov 29 2015
Formula
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)
Comments