A002260 Triangle read by rows: T(n,k) = k for n >= 1, k = 1..n.
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 1
Examples
First six rows: 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
References
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168. (Introduces upper trimming, lower trimming, and signature sequences.)
- M. Myers, Smarandache Crescendo Subsequences, R. H. Wilde, An Anthology in Memoriam, Bristol Banner Books, Bristol, 1998, p. 19.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..11325
- Franklin T. Adams-Watters, Doubly Fractal Sequences
- Matin Amini and Majid Jahangiri, A Novel Proof for Kimberling's Conjecture on Doubly Fractal Sequences, arXiv:1612.09481 [math.NT], 2017.
- Bruno Berselli, Illustration of the initial terms
- Jerry Brown et al., Problem 4619, School Science and Mathematics (USA), Vol. 97(4), 1997, pp. 221-222.
- Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
- Clark Kimberling, Fractal sequences
- Clark Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Aaron Snook, Augmented Integer Linear Recurrences, 2012. - _N. J. A. Sloane_, Dec 19 2012
- Michael Somos, Sequences used for indexing triangular or square arrays
- Eric Weisstein's World of Mathematics, Smarandache Sequences
- Eric Weisstein's World of Mathematics, Unit Fraction
Crossrefs
Cf. A000217, A001710, A002262, A003056, A004736 (ordinal transform), A025581, A056534, A094727, A127779.
Cf. A140756 (alternating signs).
Triangle sums (see the comments): A000217 (Row1, Kn11); A004526 (Row2); A000096 (Kn12); A055998 (Kn13); A055999 (Kn14); A056000 (Kn15); A056115 (Kn16); A056119 (Kn17); A056121 (Kn18); A056126 (Kn19); A051942 (Kn110); A101859 (Kn111); A132754 (Kn112); A132755 (Kn113); A132756 (Kn114); A132757 (Kn115); A132758 (Kn116); A002620 (Kn21); A000290 (Kn3); A001840 (Ca2); A000326 (Ca3); A001972 (Gi2); A000384 (Gi3).
Cf. A108872.
Programs
-
Haskell
a002260 n k = k a002260_row n = [1..n] a002260_tabl = iterate (\row -> map (+ 1) (0 : row)) [1] -- Reinhard Zumkeller, Aug 04 2014, Jul 03 2012
-
Maple
at:=0; for n from 1 to 150 do for i from 1 to n do at:=at+1; lprint(at,i); od: od: # N. J. A. Sloane, Nov 01 2006 seq(seq(i,i=1..k),k=1..13); # Peter Luschny, Jul 06 2009
-
Mathematica
FoldList[{#1, #2} &, 1, Range[2, 13]] // Flatten (* Robert G. Wilson v, May 10 2011 *) Flatten[Table[Range[n],{n,20}]] (* Harvey P. Dale, Jun 20 2013 *)
-
Maxima
T(n,k):=sum((i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1),i,max(0,n+1-2*k),n-k+1); /* Vladimir Kruchinin, Oct 18 2013 */
-
PARI
t1(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* this sequence */
-
PARI
A002260(n)=n-binomial((sqrtint(8*n)+1)\2,2) \\ M. F. Hasler, Mar 10 2014
-
Python
from math import isqrt, comb def A002260(n): return n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 08 2024
Formula
a(n) = 1 + A002262(n).
n-th term is n - m*(m+1)/2 + 1, where m = floor((sqrt(8*n+1) - 1) / 2).
The above formula is for offset 0; for offset 1, use a(n) = n-m*(m+1)/2 where m = floor((-1+sqrt(8*n-7))/2). - Clark Kimberling, Jun 14 2011
a(k * (k + 1) / 2 + i) = i for k >= 0 and 0 < i <= k + 1. - Reinhard Zumkeller, Aug 14 2001
a(n) = (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2. - Brian Tenneson, Oct 11 2003
a(n) = n - binomial(floor((1+sqrt(8*n))/2), 2). - Paul Barry, May 25 2004
a(A000217(n)) = A000217(n) - A000217(n-1), a(A000217(n-1) + 1) = 1, a(A000217(n) - 1) = A000217(n) - A000217(n-1) - 1. - Alexander R. Povolotsky, May 28 2008
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n-k,n-i) (regarded as triangle, see the example). - Mircea Merca, Apr 11 2012
T(n,k) = Sum_{i=max(0,n+1-2*k)..n-k+1} (i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1). - Vladimir Kruchinin, Oct 18 2013
G.f.: x*y / ((1 - x) * (1 - x*y)^2) = Sum_{n,k>0} T(n,k) * x^n * y^k. - Michael Somos, Sep 17 2014
a(n) = n - S(n) where S(n) = sum of distinct terms in {a(1), a(2), ..., a(n-1)}. - David James Sycamore, Mar 10 2025
Extensions
More terms from Reinhard Zumkeller, Apr 27 2006
Incorrect program removed by Franklin T. Adams-Watters, Mar 19 2010
New name from Omar E. Pol, Jul 15 2012
Comments