cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 240 results. Next

A182630 T(n,k) = A002024(k+1)*n + A002262(k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 2, 2, 1, 3, 4, 3, 0, 4, 6, 5, 3, 1, 5, 8, 7, 6, 4, 2, 6, 10, 9, 9, 7, 5, 0, 7, 12, 11, 12, 10, 8, 4, 1, 8, 14, 13, 15, 13, 11, 8, 5, 2, 9, 16, 15, 18, 16, 14, 12, 9, 6, 3, 10, 18, 17, 21, 19, 17, 16, 13, 10, 7, 0
Offset: 0

Views

Author

Omar E. Pol, Dec 06 2010

Keywords

Comments

A table of congruences.
See A182631 for another version.

Examples

			Table of congruences:
===============+====+=======+==========+=============+====
           mod |  1 |   2   |     3    |      4      | ...
===============+====+=======+==========+=============+====
  congruent to |  0 |  0  1 |  0  1  2 |  0  1  2  3 | ...
===============+====+=======+==========+=============+====
Array begins:  |  0 |  0  1 |  0  1  2 |  0  1  2  3 | ...
               |  1 |  2  3 |  3  4  5 |  4  5  6  7 | ...
               |  2 |  4  5 |  6  7  8 |  8  9 10 11 | ...
               |  3 |  6  7 |  9 10 11 | 12 13 14 15 | ...
               |  4 |  8  9 | 12 13 14 | 16 17 18 19 | ...
               |  5 | 10 11 | 15 16 17 | 20 21 22 23 | ...
               |  6 | 12 13 | 18 19 20 | 24 25 26 27 | ...
               |  7 | 14 15 | 21 22 23 | 28 29 30 31 | ...
               |  8 | 16 17 | 24 25 26 | 32 33 34 35 | ...
               |  9 | 18 19 | 27 28 29 | 36 37 38 39 | ...
               | 10 | 20 21 | 30 31 32 | 40 41 42 43 | ...
		

Crossrefs

Programs

A182102 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182431(k,i + 1) * A182431(k,i + 2) equals "r" + A000217(a(k,i)).

Original entry on oeis.org

0, -1, 4, 48, -1, 7, 343, 16, 0, 8, 2064, 123, -1, 3, 10, 12095, 748, 0, 12, 5, 11, 70560, 4391, 7, 71, 10, 8, 12, 411319, 25624, 48, 416, 45, 23, 11, 13, 2397408, 149379, 287, 2427, 250, 116, 36, 14, 14, 13973183, 870676
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 11 2012

Keywords

Comments

It is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. It is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = 4 - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of 1 or 0 in column 0 form related series A182189 and A182190.
The Mathematica program below first calculates an array containing only the first four nonnegative triangular arguments P of each row then changes at most 2 of the arguments to the corresponding negative value, N = -P -1 in order to obtain the relation a(k,i) -7*a(k,i+1) + 7*a(k,i+2) - a(k,i+3) = 0, then chooses the appropriate argument to continue this relationship with the remainder of the row. In this way, the sequence is finally determined. Thus in this table a few 0's have been changed to -1.

Examples

			The table begins as follows:
0   -1  48  343 2064 12095  70560 ...
4   -1  16  123  748  4391  25624 ...
7    0  -1    0    7    48    287 ...
8    3  12   71  416  2427  14148 ...
10   5  10   45  250  1445   8410 ...
11   8  23  116  659  3824  22271 ...
12  11  36  187 1068  6203  36132 ...
13  14  49  258 1477  8582  49993 ...
14  17  62  329 1886 10961  63854 ...
15  20  75  400 2295 13340  77715 ...
16  23  88  471 2704 15719  91576 ...
17  26 101  542 3113 18098 105437 ...
17  30 129  710 4097 23838 138897 ...
...
For n > 1, a(k,n) = 6*a(k,n-1) - a(k,n-2) + G_k where G_k is dependent on k.
		

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1));
    K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<11, b=a; While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

Formula

a(k,0) = Floor[(Sqrt[1 + 112*k] - 1)/2]
a(k,i) = A003056(A182431(k,i+1)*A182431(k,i+2) - A002262(14*k)) or
-1 - A003056(A182431(k,i+1)*A182431(k,i+2) - A002262(14*k)) .
For i>2, a(k,i) = 7*a(k,i-1)-7*a(k,i-2)+a(k,i-3).

A182119 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182439(k,i + 1) *A182439(k,i + 2) equals "r" + A000217(a(k,i)) for i<4, while a(k,i) = 0 for i>3.

Original entry on oeis.org

0, 55, 4, 384, 51, 7, 2303, 328, 48, 8, 0, 1943, 287, 47, 10, 0, 0, 1680, 276, 45, 11, 0, 0, 0, 1611, 250, 44, 12, 0, 0, 0, 0, 1445, 239, 43, 13, 0, 0, 0, 0, 0, 1376, 228, 42, 14, 0, 0, 0, 0, 0, 1307, 213, 41, 15
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 12 2012

Keywords

Comments

The triangular product A000217(a(k,i)) for i < 4 + A002262(14*k) = the product of adjacent terms G(k,i+1)*G(k,i+2) where G is table A182439. The remainder of each row is padded with zeros. However, if for i > 3, a(k,i) were set to equal 7*a(k,i-1) - 7*a(k,i-2) + a(k,i-3) then the relation above would not be limited to i < 4.
Also, it is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. In the Mathematica program below, m is set to 14; however, regardless of it value of m, it is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of 1 or 0 in column 0 form related series A182188 and A182190.
The Mathematica program below basically first computes only the nonnegative triangular arguments P. Then it changes at most two of the arguments P in each row k to the corresponding negative value, N = -P -1, in order to obtain the relation a(k,3) = a(k,0) - 7*a(k,1) + 7*a(k,2).

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1));
    K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

A344534 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A002262(e_k))^2^A025581(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 12, 24, 16, 32, 64, 128, 48, 96, 192, 384, 9, 18, 36, 72, 27, 54, 108, 216, 144, 288, 576, 1152, 432, 864, 1728, 3456, 5, 10, 20, 40, 15, 30, 60, 120, 80, 160, 320, 640, 240, 480, 960, 1920, 45, 90, 180, 360, 135, 270, 540, 1080, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 9
5| 5 8
3| 2 4 7
2| 0 1 3 6
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344536.
This sequence establishes a bijection from A261195 to A225547.
This sequence and A344535 each map between two useful choices for encoding sets of elements drawn from a 2-dimensional array. To give a very specific example, each mapping is an isomorphism between two alternative integer representations of the polynomial ring GF2[x,y]. The relevant set is {x^i*y^j : i, j >= 0}. The mappings between the two representations of the ring's addition operation are from XOR (A003987) to A059897(.,.) and for the multiplication operation, they are from A329331(.,.) to A329329(.,.). - Peter Munn, May 31 2021

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3|
      2|   X X
    ---+------
    p/k| 0 1 2
- a(42) = 2^2^1 * 2^2^2 * 5^2^0 = 320.
		

Crossrefs

Comparable mappings that also use Fermi-Dirac factors: A052330, A059900.
Maps binary operations A003987 to A059897, A329331 to A329329.

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v* = prime(1 + A002262(e))^2^A025581(e)); v }

Formula

a(n) = A344535(A344531(n)).
a(n) = A344535(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A036442(n)) = prime(n).
a(A006125(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).
From Peter Munn, Jun 06 2021: (Start)
a(n) = A225546(A344535(n)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(A329331(n, k)) = A329329(a(n), a(k)).
(End)

A344535 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A025581(e_k))^2^A002262(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 16, 32, 48, 96, 64, 128, 192, 384, 80, 160, 240, 480, 320, 640, 960, 1920, 144, 288, 432, 864, 576, 1152, 1728, 3456, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 6
5| 3 7
3| 1 4 8
2| 0 2 5 9
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344537.
This sequence establishes a bijection from A261195 to A225547.

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3| X
      2|     X
    ---+------
    p/k| 0 1 2
- a(42) = 3^2^0 * 5^2^0 * 2^2^2 = 240.
		

Crossrefs

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v *= prime(1 + A025581(e))^2^A002262(e)); v }

Formula

a(n) = A344534(A344531(n)).
a(n) = A344534(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A006125(n)) = prime(n) for any n > 0.
a(A036442(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).

A166021 a(n) = 2*A000124(A003056(n-1)) if A002262(n-1)=0, otherwise a(n-1)+1.

Original entry on oeis.org

2, 4, 5, 8, 9, 10, 14, 15, 16, 17, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 44, 45, 46, 47, 48, 49, 50, 58, 59, 60, 61, 62, 63, 64, 65, 74, 75, 76, 77, 78, 79, 80, 81, 82, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Antti Karttunen, Oct 05 2009

Keywords

Crossrefs

Complement of A136272.

A182118 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182440(k,i + 1) *A182440(k,i + 2) equals "r" + a(k,i)*(a(k,i)+1)/2.

Original entry on oeis.org

-1, 0, -5, 63, 8, -8, 440, 151, 15, -9, 0, 996, 224, 20, -11, 0, 0, 1455, 267, 26, -12, 0, 0, 0, 1720, 325, 31, -13, 0, 0, 0, 0, 2082, 368, 36, -14, 0, 0, 0, 0, 0, 2347, 411, 41, -15, 0, 0, 0, 0, 0, 0, 2612, 454, 46
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 12 2012

Keywords

Comments

It is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. It is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = 4 - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of -1 or 0 in column 0 form related series A182191 and A182190.
The Mathematica program below first calculates an array containing only the first four nonnegative triangular arguments P of each row then changes at most 2 of the arguments to the corresponding negative value, N = -P -1 in order to obtain the relation a(k,i) -7*a(k,i+1) + 7*a(k,i+2) - a(k,i+3) = 0, then chooses the appropriate argument to continue this relationship with the remainder of the row. In this way, the sequence is finally determined. Thus in this table a few 0's have been changed to -1.

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

A182355 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182441(k,i + 1) *A182441(k,i + 2) equals "r" + a(k,i)*(a(k,i) + 1)/2 for i<4, while a(k,i) = 0 for i>3.

Original entry on oeis.org

-1, 56, -5, 399, 60, -8, 2400, 463, 63, -9, 0, 2816, 512, 64, -11, 0, 0, 3135, 531, 66, -12, 0, 0, 0, 3260, 565, 67, -13, 0, 0, 0, 0, 3482, 584, 68, -14, 0, 0, 0, 0, 0, 3607, 603, 69, -15, 0, 0, 0, 0, 0, 0, 3732, 622
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 25 2012

Keywords

Comments

The triangular product a(k,i)*(a(k,i)+1)/2 + A002262(14*k) for i<4 = the product of adjacent terms G(k,i+1)*G(k,i+2) where G is table A182441. The remainder of each row is padded with zeros. However, if for i > 3, a(k,i) were set to equal 7*a(k,i-1) - 7*a(k,i-2) + a(k,i-3) then the relation above would not be limited to i < 4.
Also, it is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. In the Mathematica program below, m is set to 14; however, regardless of it value of m, it is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference d of -1 is series A182193.
The Mathematica program below basically first computes only the nonnegative triangular arguments P. Then it changes at most two of the arguments P in each row k to the corresponding negative value, N = -P -1, in order to obtain the relation a(k,3) = a(k,0) - 7*a(k,1) + 7*a(k,2).

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

A271668 Triangle read by rows. The first column is A000217(n+1). From the second row we apply - A002262(n) for the following terms of the row.

Original entry on oeis.org

1, 3, 3, 6, 6, 5, 10, 10, 9, 7, 15, 15, 14, 12, 9, 21, 21, 20, 18, 15, 11, 28, 28, 27, 25, 22, 18, 13, 36, 36, 35, 33, 30, 26, 21, 15, 45, 45, 44, 42, 39, 35, 30, 24, 17, 55, 55, 54, 52, 49, 45, 40, 34, 27, 19, 66, 66, 65, 63, 60, 56, 51, 45, 38, 30, 21
Offset: 0

Views

Author

Paul Curtz, Apr 12 2016

Keywords

Comments

Row sums: A084990(n+1).
A158405(n) = A002262(n) + A002260(n). See the formula.
(Without its first column, A094728 is A120070, which could be built from positive A005563 and -A158894.)

Examples

			a(0) = 1, a(1) = 3, a(2) =3-0 = 3,  a(3) = 6, a(4) =6-0= 6, a(5) =6-1= 5, ... .
Triangle:
1,
3,   3,
6,   6,  5,
10, 10,  9,  7,
15, 15, 14, 12,  9,
21, 21, 20, 18, 15, 11,
28, 28, 27, 25, 22, 18, 13,
36, 36, 35, 33, 30, 26, 21, 15,
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - n)/2 - Prepend[Accumulate@ Range[0, n - 3], 0], {n, 12}] // Flatten (* Michael De Vlieger, Apr 12 2016 *)

Formula

a(n) = A094728(n+1) - A049780(n).

A345236 Triangle read by rows: The rightmost column contains the terms of A002262 starting at A002262(1). Each time a column's value is zero (except for a(0)), the column to its left starts at the next term in A002262, or if that column does not yet exist, it starts at A002262(2).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 4, 1, 0, 0, 5, 1, 0, 0, 6, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 3
Offset: 0

Views

Author

John-Vincent Saddic, Jul 14 2021

Keywords

Comments

The first row with k columns is the A006893(k)-th. The last row with k columns comprises the first k terms of A006893.

Examples

			Triangle begins as:
  0
  1
  1 0
  1 1
  1 2
  1 0 0
  1 0 1
  1 0 2
  1 0 3
  1 1 0
		

Crossrefs

First row with n values: A006893(n).

Programs

  • Java
    See Links. Rows are printed with values concatenated. Values greater than 10 are represented between parentheses, e.g., row 100 is 113(10).

Formula

To calculate the values of the n-th row:
c(m) = floor((sqrt(9 + 8*m) - 3)/2) = A052146(m+1).
r(m) = m - (c(m)^2)/2 - 3*c(m)/2 = A002262(m+1).
The last value of row m is r(m), the second to last value is r(c(m)), the third to last value is r(c(c(m))), and so on until c(m) equals 0.
Showing 1-10 of 240 results. Next