Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A002397
a(n) = n! * lcm({1, 2, ..., n+1}).
Original entry on oeis.org
1, 2, 12, 72, 1440, 7200, 302400, 4233600, 101606400, 914457600, 100590336000, 1106493696000, 172613016576000, 2243969215488000, 31415569016832000, 942467070504960000, 256351043177349120000, 4357967734014935040000, 1490424965033107783680000
Offset: 0
5! is 120, and the least common multiple of 2, 3, 4, 5 and 6 is 60, so a(5) = 7200.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of the use of this sequence.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002399
Coefficients for step-by-step integration.
Original entry on oeis.org
1, 16, 177, 5548, 39615, 2236440, 40325915, 1207505768, 13229393814, 1737076976040, 22446050738265, 4058838484620084, 60476452041557409, 961082989270516112, 32455938583801467735, 9864953815464307351792, 186195769473110823077652, 70295408103581008790661648, 1466826914074651870368663750
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 1..100
- Jack W Grahl, Explanation of how the sequence was calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002400
Coefficients for step-by-step integration.
Original entry on oeis.org
5, 111, 5232, 49910, 3527745, 76435695, 2673350008, 33507517680, 4954123399050, 71186377398675, 14169975006172392, 230478985529218998, 3970388091885696481, 144475785096372785055, 47074452451240708494000, 948198128552832829175504, 380523626987174239611912012, 8410876353715824882741160170
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 2..100
- Jack W Grahl, Explanation of how this sequence is calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002401
Coefficients for step-by-step integration.
Original entry on oeis.org
1, 1, 5, 27, 502, 2375, 95435, 1287965, 29960476, 262426878, 28184365650, 303473091075, 46437880787562, 593196287807409, 8172332906336599, 241563260379065625, 64808657541894257992, 1087738506483388123364, 367580830209839294339148, 6906008426663826491899602, 136666305828261517346022452
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how this sequence is calculated
- Jack W Grahl, Python code to calculate this and related sequences
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002402
Coefficients for step-by-step integration.
Original entry on oeis.org
1, 8, 57, 1292, 7135, 325560, 4894715, 125078632, 1190664342, 137798986920, 1587893097945, 258558380321076, 3497709055775649, 50821738502398864, 1578753057237451095, 443765620067972169968, 7782162960545369351956, 2741163034641146307693072, 53564617257321061756508358, 1100369599246721484969558920
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 1..100
- Jack W Grahl, Explanation of how this sequence is calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002403
Coefficients for step-by-step integration.
Original entry on oeis.org
1, 15, 528, 3990, 232305, 4262895, 128928632, 1420184304, 186936865290, 2416826727315, 436683783190248, 6495589851083190, 102988034105173217, 3468347338313592735, 1050976389766688264880, 19771777981152440202960, 7439086137698489458667340, 154685313008524836907739370, 3369940174123349111629009120
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 2..100
- Jack W Grahl, Explanation of how this sequence is calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002404
Coefficients for step-by-step integration.
Original entry on oeis.org
3, -16, 111, -2548, 14385, -672360, 10351845, -270594968, 2631486186, -310710613080, 3648232023975, -604596371658444, 8315244191734623, -122717408718016112, 3868618892876082345, -1102643727493413977872, 19593301788429800483052, -6988461512994426036295152, 138198195880599649938536250
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how this sequence is calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
If every other term is negated, this is a diagonal of
A260780.
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002405
Coefficients for step-by-step integration.
Original entry on oeis.org
1, -1, -1, -3, -38, -135, -4315, -48125, -950684, -7217406, -682590930, -6554931075, -903921420138, -10496162430897, -132415122967127, -3606726811032345, -896549281211592008, -14008671728814262500, -4425739007479443851340
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how the sequence was calculated
- Jack W Grahl, Python code to calculate this and related sequences
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
With different signs, this is the leading diagonal of
A260781.
The coefficients used in numerical integration are given by fractions with
A002397 as the denominators.
A002401 is the corresponding sequence for the symmetric method of estimation.
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
A002406
Coefficients for step-by-step integration.
Original entry on oeis.org
1, 8, -15, 212, -865, 31560, -397285, 8760472, -73512810, 7619823960, -79612742055, 11869626289356, -148201090063455, 2000757995572336, -58073355854498985, 15325818191986269968, -253388757170439526636, 84454267865884467099120, -1566608640281391343515450, 30637801046762651850275960
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how this sequence is calculated.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
The following sequences are taken from page 231 of Pickard (1964):
A002397,
A002398,
A002399,
A002400,
A002401,
A002402,
A002403,
A002404,
A002405,
A002406,
A260780,
A260781.
Showing 1-10 of 12 results.
Comments