cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002407 Cuban primes: primes which are the difference of two consecutive cubes.

Original entry on oeis.org

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391
Offset: 1

Views

Author

Keywords

Comments

Primes of the form p = (x^3 - y^3)/(x - y) where x=y+1. See A007645 for generalization. I first saw the name "cuban prime" in Cunningham (1923). Values of x are in A002504 and y are in A111251. - N. J. A. Sloane, Jan 29 2013
Prime hex numbers (cf. A003215).
Equivalently, primes of the form p=1+3k(k+1) (and then k=floor(sqrt(p/3))). Also: primes p such that n^2(p+n) is a cube for some n>0. - M. F. Hasler, Nov 28 2007
Primes p such that 4p = 1+3s^2 for some integer s (A121259). - Michael Somos, Sep 15 2005
This sequence is believed to be infinite. - N. J. A. Sloane, May 07 2020

Examples

			a(1) = 7 = 1+3k(k+1) (with k=1) is the smallest prime of this form.
a(10^5) = 1792617147127 since this is the 100000th prime of this form.
		

References

  • Allan Joseph Champneys Cunningham, On quasi-Mersennian numbers, Mess. Math., 41 (1912), 119-146.
  • Allan Joseph Champneys Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 241 pp. 39; 179, Ellipses Paris 2004.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is (3*n^2+3*n+1)]; // Vincenzo Librandi, Jan 20 2020
    
  • Mathematica
    lst={}; Do[If[PrimeQ[p=(n+1)^3-n^3], AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
    Select[Table[3x^2+3x+1,{x,100}],PrimeQ] (* or *) Select[Last[#]- First[#]&/@ Partition[Range[100]^3,2,1],PrimeQ] (* Harvey P. Dale, Mar 10 2012 *)
    Select[Differences[Range[100]^3],PrimeQ] (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    {a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( cMichael Somos, Sep 15 2005 */
    
  • PARI
    A002407(n,k=1)=until(isprime(3*k*k+++1) && !n--,);3*k*k--+1
    list_A2407(Nmax)=for(k=1,sqrt(Nmax/3),isprime(t=3*k*(k+1)+1) && print1(t",")) \\ M. F. Hasler, Nov 28 2007
    
  • Python
    from sympy import isprime
    def aupto(limit):
        alst, k, d = [], 1, 7
        while d <= limit:
            if isprime(d): alst.append(d)
            k += 1; d = 1+3*k*(k+1)
        return alst
    print(aupto(34000)) # Michael S. Branicky, Jul 19 2021

Formula

a(n) = 6*A000217(A111251(n)) + 1. - Christopher Hohl, Jul 01 2019
From Rémi Guillaume, Nov 07 2023: (Start)
a(n) = A003215(A111251(n)).
a(n) = (3*(2*A002504(n) - 1)^2 + 1)/4.
a(n) = (3*A121259(n)^2 + 1)/4.
a(n) = prime(A145203(n)). (End)

Extensions

More terms from James Sellers, Aug 08 2000
Entry revised by N. J. A. Sloane, Jan 29 2013