cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002409 a(n) = 2^n*C(n+6,6). Number of 6D hypercubes in an (n+6)-dimensional hypercube.

Original entry on oeis.org

1, 14, 112, 672, 3360, 14784, 59136, 219648, 768768, 2562560, 8200192, 25346048, 76038144, 222265344, 635043840, 1778122752, 4889837568, 13231325184, 35283533824, 92851404800, 241413652480, 620777963520, 1580162088960
Offset: 0

Views

Author

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>5, a(n-6) is equal to the number of (n+6)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A006976.
a(n) = A038207(n+6,6).

Programs

  • Magma
    [2^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
  • Maple
    A002409:=-1/(2*z-1)**7; # Simon Plouffe in his 1992 dissertation
    seq(binomial(n+6,6)*2^n,n=0..22); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    CoefficientList[Series[1/(1-2x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {14,-84,280,-560,672,-448,128},{1,14,112,672,3360,14784,59136},40] (* Harvey P. Dale, Jan 24 2022 *)

Formula

G.f.: 1/(1-2*x)^7.
a(n) = 2*a(n-1) + A054849(n-1).
For n>0, a(n) = 2*A082140(n).
a(n) = Sum_{i=6..n+6} binomial(i,6)*binomial(n+6,i). Example: for n=5, a(5) = 1*462 + 7*330 + 28*165 + 84*55 + 210*11 + 462*1 = 14784. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 47/5 - 12*log(2).
Sum_{n>=0} (-1)^n/a(n) = 2916*log(3/2) - 5907/5. (End)
n*a(n) +2*(-n-6)*a(n-1)=0. - R. J. Mathar, Jul 22 2025

Extensions

More terms from Henry Bottomley and James Sellers, Apr 15 2000
Typo in definition corrected by Zerinvary Lajos, Jun 16 2008