cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002419 4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.

Original entry on oeis.org

1, 10, 40, 110, 245, 476, 840, 1380, 2145, 3190, 4576, 6370, 8645, 11480, 14960, 19176, 24225, 30210, 37240, 45430, 54901, 65780, 78200, 92300, 108225, 126126, 146160, 168490, 193285, 220720, 250976, 284240, 320705, 360570, 404040, 451326, 502645, 558220
Offset: 1

Views

Author

Keywords

Comments

a(n) is the n-th antidiagonal sum of the convolution array A213761. - Clark Kimberling, Jul 04 2012
Convolution of A000027 with A000567 (excluding 0). - Bruno Berselli, Dec 07 2012
a(n) = the sum of all the ways of adding the k-tuples of A016777(0) to A016777(n-1). For n=4, the terms are 1,4,7,10 giving (1)+(4)+(7)+(10)=22; (1+4)+(4+7)+(7+10)=33; (1+4+7)+(4+7+10)=33; (1+4+7+10)=22; adding 22+33+33+22=110. - J. M. Bergot, Jun 26 2017
Also the number of chordless cycles in the (n+2)-crown graph. - Eric W. Weisstein, Jan 02 2018

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=4).
Cf. A000027, A000567, A002414 (first differences), A016777, A080852, A213761.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([1..40], n-> n*(n+1)*(n+2)*(3*n-1)/12); # G. C. Greubel, Jul 03 2019
  • Magma
    /* A000027 convolved with A000567 (excluding 0): */ A000567:=func; [&+[(n-i+1)*A000567(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 07 2012
    
  • Mathematica
    CoefficientList[Series[(1+5*x)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 20 2013 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 10, 40, 110, 245}, 40] (* Harvey P. Dale, Nov 30 2014 *)
    Table[n(n+1)(n+2)(3n-1)/12, {n, 40}] (* Eric W. Weisstein, Jan 02 2018 *)
    Table[Sum[2 x + 3 x^2 - 2 y, {x, 0, g}, {y, x, g}], {g, 1, 20}] (* Horst H. Manninger, Jun 20 2025 *)
  • PARI
    a(n)=(3*n-1)*binomial(n+2,3)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    A002419_list, m = [], [6, 1, 1, 1, 1]
    for _ in range(10**2):
        A002419_list.append(m[-1])
        for i in range(4):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [n*(n+1)*(n+2)*(3*n-1)/12 for n in (1..40)] # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = (3*n-1)*binomial(n+2, 3)/2.
G.f.: x*(1+5*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
Sum_{n>=1} 1/a(n) = (-24+81*log(3) -9*Pi*sqrt(3))/14 = 1.143929... - R. J. Mathar, Mar 29 2011
a(n) = (3*n^4 + 8*n^3 + 3*n^2 - 2*n)/12. - Chai Wah Wu, Jan 24 2016
a(n) = A080852(6,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(12 + 48*x + 26*x^2 + 3*x^3)*exp(x)/12. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(3*sqrt(3)*Pi - 32*log(2) + 8)/7. - Amiram Eldar, Feb 11 2022