A002419 4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.
1, 10, 40, 110, 245, 476, 840, 1380, 2145, 3190, 4576, 6370, 8645, 11480, 14960, 19176, 24225, 30210, 37240, 45430, 54901, 65780, 78200, 92300, 108225, 126126, 146160, 168490, 193285, 220720, 250976, 284240, 320705, 360570, 404040, 451326, 502645, 558220
Offset: 1
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to sequences related to pyramidal numbers.
Crossrefs
Programs
-
GAP
List([1..40], n-> n*(n+1)*(n+2)*(3*n-1)/12); # G. C. Greubel, Jul 03 2019
-
Magma
/* A000027 convolved with A000567 (excluding 0): */ A000567:=func
; [&+[(n-i+1)*A000567(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 07 2012 -
Mathematica
CoefficientList[Series[(1+5*x)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 20 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 10, 40, 110, 245}, 40] (* Harvey P. Dale, Nov 30 2014 *) Table[n(n+1)(n+2)(3n-1)/12, {n, 40}] (* Eric W. Weisstein, Jan 02 2018 *) Table[Sum[2 x + 3 x^2 - 2 y, {x, 0, g}, {y, x, g}], {g, 1, 20}] (* Horst H. Manninger, Jun 20 2025 *)
-
PARI
a(n)=(3*n-1)*binomial(n+2,3)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
A002419_list, m = [], [6, 1, 1, 1, 1] for _ in range(10**2): A002419_list.append(m[-1]) for i in range(4): m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
Sage
[n*(n+1)*(n+2)*(3*n-1)/12 for n in (1..40)] # G. C. Greubel, Jul 03 2019
Formula
a(n) = (3*n-1)*binomial(n+2, 3)/2.
G.f.: x*(1+5*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
Sum_{n>=1} 1/a(n) = (-24+81*log(3) -9*Pi*sqrt(3))/14 = 1.143929... - R. J. Mathar, Mar 29 2011
a(n) = (3*n^4 + 8*n^3 + 3*n^2 - 2*n)/12. - Chai Wah Wu, Jan 24 2016
a(n) = A080852(6,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(12 + 48*x + 26*x^2 + 3*x^3)*exp(x)/12. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(3*sqrt(3)*Pi - 32*log(2) + 8)/7. - Amiram Eldar, Feb 11 2022
Comments