cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.

Original entry on oeis.org

3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299
Offset: 1

Views

Author

Keywords

Comments

2*p+1 divides A000225(p), the p-th Mersenne number. - Lekraj Beedassy, Jun 23 2003
Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - Arkadiusz Wesolowski, May 26 2011
Intersection of A005384 (Sophie Germain primes) and A002145. - Jeppe Stig Nielsen, Aug 03 2020

References

  • A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
  • Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A002145 and A005384.

Programs

  • MATLAB
    p=primes(1500); m=1;
    for u=1:length(p)
       if and(isprime(2*p(u)+1)==1, mod(p(u),4)==3) ; sol(m)=p(u); m=m+1;  end;
    end
    sol % Marius A. Burtea, Mar 26 2019
  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016
    
  • Mathematica
    Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ]
    Select[Prime[Range[500]],Mod[#,4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *)
  • PARI
    is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013
    
  • PARI
    list(lim)=my(v=List()); forprimestep(p=3,lim\1,4, if(isprime(2*p+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 25 2024
    

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024

Extensions

More terms from Robert G. Wilson v, Mar 07 2002