A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.
3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299
Offset: 1
References
- A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
- Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from T. D. Noe)
Programs
-
MATLAB
p=primes(1500); m=1; for u=1:length(p) if and(isprime(2*p(u)+1)==1, mod(p(u),4)==3) ; sol(m)=p(u); m=m+1; end; end sol % Marius A. Burtea, Mar 26 2019
-
Magma
[p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016
-
Mathematica
Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ] Select[Prime[Range[500]],Mod[#,4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *)
-
PARI
is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013
-
PARI
list(lim)=my(v=List()); forprimestep(p=3,lim\1,4, if(isprime(2*p+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 25 2024
Formula
a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024
Extensions
More terms from Robert G. Wilson v, Mar 07 2002
Comments