cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A054723 Prime exponents of composite Mersenne numbers.

Original entry on oeis.org

11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 101, 103, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 20 2000

Keywords

Comments

Primes p such that 2^p-1 is composite.
No proof is known that this sequence is infinite!
Assuming a conjecture of Dickson, we can prove that this sequence is infinite. See Ribenboim. - T. D. Noe, Jul 30 2012
A002515 \ {3} is a subsequence. Any proof that A002515 is infinite would imply that this sequence is infinite. - Jeppe Stig Nielsen, Aug 03 2020

Examples

			p=29 is included because 29 is prime, but 2^29-1 is *not* prime.
		

References

  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 378.

Crossrefs

Complement of A000043 inside A000040.
Cf. A016027.

Programs

  • Magma
    [p: p in PrimesUpTo(350) | not IsPrime(2^p-1)];  // Bruno Berselli, Oct 11 2012
    
  • Mathematica
    Select[Prime[Range[70]], ! PrimeQ[2^# - 1] &] (* Harvey P. Dale, Feb 03 2011 *)
    Module[{nn=15,mp},mp=MersennePrimeExponent[Range[nn]];Complement[ Prime[ Range[ PrimePi[Last[mp]]]],mp]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2019 *)
  • PARI
    forprime(p=2, 1e3, if(!isprime(2^p-1), print1(p, ", "))) \\ Felix Fröhlich, Aug 10 2014

Extensions

Offset corrected by Arkadiusz Wesolowski, Jul 29 2012

A085724 Numbers k such that 2^k - 1 is a semiprime (A001358).

Original entry on oeis.org

4, 9, 11, 23, 37, 41, 49, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1

Views

Author

Jason Earls, Jul 20 2003

Keywords

Comments

Subsequence of A000430. Apart from 4, 9, and 49 composites in this sequence are greater than 1.9e7. - Charles R Greathouse IV, Jun 05 2013
1427 and 1487 are also terms. 1277 is the only remaining unknown below them. - Charles R Greathouse IV, Jun 05 2013
Among the known terms only 11, 23, 83 and 131 are in A002515, that is, they are the only known values for n such that (2^n - 1)/(2*n + 1) is prime. - Jianing Song, Jan 22 2019
Either a(n) is a prime, or the square of a Mersenne prime exponent. - M. F. Hasler, Jun 23 2025

Examples

			11 is a member because 2^11 - 1 = 23*89.
		

References

  • J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 22 2009]
  • J. Earls, "Cole Semiprimes," Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 25 2009]

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[n_]:=(n>1) && (2==Plus@@(Transpose[FactorInteger[n]][[2]])); Select[Range[100],SemiPrimeQ[2^#-1]&] (Noe)
    Select[Range[1100],PrimeOmega[2^#-1]==2&] (* Harvey P. Dale, Feb 18 2018 *)
    Select[Range[250], Total[Last /@ FactorInteger[2^# - 1, 3]] == 2 &] (* Eric W. Weisstein, Jul 28 2022 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(isprime(n), issemi(2^n-1), my(q); isprimepower(n,&q)==2 && ispseudoprime(2^q-1) && ispseudoprime((2^n-1)/(2^q-1))) \\ Charles R Greathouse IV, Jun 05 2013

Extensions

More terms from Zak Seidov, Feb 27 2004
More terms from Cunningham project, Mar 23 2004
More terms from the Cunningham project sent by Robert G. Wilson v and T. D. Noe, Feb 22 2006
a(41)-a(42) from Charles R Greathouse IV, Jun 05 2013

A101794 Numbers k such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are all primes.

Original entry on oeis.org

45, 90, 675, 885, 3030, 4290, 6870, 13410, 14460, 15855, 17850, 18675, 20625, 21885, 25350, 26820, 26925, 28230, 30525, 30705, 31710, 31785, 33375, 34860, 41685, 41940, 57435, 63420, 63570, 71805, 74025, 78585, 83865, 85230, 93075
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 45 is a term.
		

Crossrefs

Subsequence of A005099, A005122 and A101790.
Subsequence: A101994.

Programs

  • Mathematica
    Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1); \\ Amiram Eldar, May 13 2024

A101994 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are all primes.

Original entry on oeis.org

45, 13410, 15855, 31710, 31785, 63570, 74025, 85230, 151830, 202635, 267300, 280665, 399675, 405405, 455250, 466560, 478170, 480240, 511335, 534600, 539475, 561330, 569520, 589305, 666945, 716460, 743160, 748215, 766785, 799350, 860835
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 45 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1) && isprime(64*k-1); \\ Amiram Eldar, May 13 2024

A158034 Integers n for which f = (4^n - 2^n + 8n^2 - 2) / (2n * (2n + 1)) is an integer.

Original entry on oeis.org

3, 11, 23, 83, 131, 179, 191, 239, 243, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 891, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1539, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2211, 2339, 2351, 2399, 2459, 2511, 2543, 2699, 2819, 2903
Offset: 1

Views

Author

Reikku Kulon, Mar 11 2009

Keywords

Comments

Superset of A002515; 2n + 1 is prime. A recursive search for members of this sequence results in the infinite series of very large primes A145918. Most members of this sequence are also prime, but five members less than 10000 are composite:
.. . 243 = 3^5
.. . 891 = 3^4 * 11
. . 1539 = 3^4 * 19
. . 2211 = 3 * 11 * 67
. . 2511 = 3^4 * 31
The polygonal number with f sides of length 2n + 1 is (2^n - 1)(2^(n - 1)).
Contribution from Reikku Kulon, May 19 2009: (Start)
The average difference between successive composite terms gradually increases, remaining near their order of magnitude. Roughly 3% of all primes less than 20 billion belong to this sequence or the 2n + 1 sequence. The interval between composite terms 12228632879 and 13169544651 contains 1113606 primes, accounting for 2.75% of the primes in the interval and 1.42% of the primes between 24457265759 and 26339089303.
Prime factors are most often congruent to 3 (mod 4), but some factors are congruent to 1 (mod 4), especially when a term has an even number of not necessarily distinct factors. The most common factor is 3, and often a large power of 3 is a divisor. 5, 7, 13, and 17 are never factors.
The ones digit of composite terms is most often 1, and becomes progressively more likely to be 1. It is never 5. It cannot be 7, because 2n + 1 would then be divisible by 5. The lack of solutions with n divisible by 5 appears crucial to the consistent primality of 2n + 1.
The tens digit is odd if the ones digit is 1 or 9; it is even if the ones digit is 3. This is a consequence of congruence to 3 (mod 4).
The most common least significant two digits of composite terms are 51.
The least significant digits of prime terms do not follow an obvious distribution.
This is the simplest and possibly most productive member of a family of similar sequences defined by f = (s + 8n^2 - 2) / (2n * (2n + 1)), where s is pronic. For these sequences, 2n + 1 is dominated by primes.
=====================================
Large sequences of consecutive primes
=====================================
. Initial term Primes Predecessor Successor Gap
. ---------------------------------------------------------------
. 1529648303 157285 1529648231 1639846391 110198160
. 3832649339 473045 3832647111 4193496803 360849692
. 5897103683 411434 5897102751 6223464171 326361420
. 6543227423 445293 6543226251 6899473631 356247380
. 8126586971 913506 8126586711 8871331491 744744780
. 9533381219 689395 9533380131 10103115231 569735100
. 11576086883 708712 11576086731 12171829419 595742688
. 12228633251 1113606 12228632879 13169544651 940911772
. 21315457451 2328623 21315457251 23375077119 2059619868
(End)

Examples

			ngon(f, k) = k * (f * (k - 1) / 2 - k + 2)
. . . 3 = (4^3 - 2^3 + 8 * 9 - 2) / (6 * 7)
. . . . = (2 * 28 + 70) / 42
. . 126 = (2 * 28 + 70)
.. . 28 = (2^3 - 1) * 2^2
. . . . = 126 - 70 - 28
. . . . = 7 * (18 - 10 - 4)
. . . . = 7 * (3 * 6 - 3 * 3 - 5)
. . . . = 7 * (3 * 3 - 7 + 2)
.. 8287 = (4^11 - 2^11 + 8 * 121 - 2) / (22 * 23)
. . . . = (2 * 2096128 + 966) / 506
4193222 = (2 * 2096128 + 966)
2096128 = (2^11 - 1) * 2^10
. . . . = 4193222 - 2096128 - 966
. . . . = 23 * (182314 - 91136 - 42)
. . . . = 23 * (8287 * 22 - 8287 * 11 - 21)
. . . . = 23 * (8287 * 11 - 23 + 2)
Coincidentally, 8287 = 129 * 64 + 31 = 257 * 32 + 63 is prime, and may be the largest value of f that is.
1031 = 257 * 4 + 3 and 2063 = 1031 * 2 + 1 are both members of this sequence, 4127 = 2063 * 2 + 1 is prime, and 8287 = (4127 + 16) * 2 + 1.
		

Crossrefs

Cf. A002515 (Lucasian primes)
Cf. A145918 (exponential Sophie Germain primes)
Cf. A139601 (polygonal numbers)
Cf. A046318, A139876 (related to composite members 243, 891, 1539, and 2511)
Cf. A060210, A002034, A109833, A136801 (their factors)
Cf. A039506 (3, 8287)
Cf. A006516 (2^n - 1)(2^(n - 1))
Cf. A000051 (Fermat numbers), A019434 (Fermat primes)
Cf. A142291 (prime sequence 257, 1031, 2063, 4127)
Cf. A235540 (nonprimes), A002943.

Programs

  • Haskell
    a158034 n = a158034_list !! (n-1)
    a158034_list = [x | x <- [1..],
                        (4^x - 2^x + 8*x^2 - 2) `mod` (2*x*(2*x + 1)) == 0]
    -- Reinhard Zumkeller, Jan 12 2014

A101790 Numbers k such that 4*k-1, 8*k-1 and 16*k-1 are all primes.

Original entry on oeis.org

3, 45, 90, 180, 255, 258, 363, 378, 453, 483, 615, 675, 705, 873, 885, 978, 1350, 1533, 1770, 1788, 2673, 2793, 2868, 3030, 3225, 3240, 4203, 4290, 4548, 4830, 4998, 5103, 5253, 5295, 5568, 5775, 5955, 6060, 6138, 6870, 7383, 7713, 8133, 8370, 8580, 9000
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3 - 1 = 11, 8*3 - 1 = 23 and 16*3 - 1 = 47 are primes, so 3 is a term.
		

Crossrefs

Subsequence of A005099 and A005122.
Subsequences: A101794, A101994.

Programs

  • Magma
    [n: n in [0..10000] | IsPrime(4*n-1) and IsPrime(8*n-1) and IsPrime(16*n-1)]; // Vincenzo Librandi, Nov 17 2010
    
  • Mathematica
    Select[Range[10^4], And @@ PrimeQ[2^Range[2, 4]*# - 1] &] (* Amiram Eldar, May 12 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1); \\ Amiram Eldar, May 12 2024

A101793 Primes of the form 16*k-1 such that 4*k-1 and 8*k-1 are also primes.

Original entry on oeis.org

47, 719, 1439, 2879, 4079, 4127, 5807, 6047, 7247, 7727, 9839, 10799, 11279, 13967, 14159, 15647, 21599, 24527, 28319, 28607, 42767, 44687, 45887, 48479, 51599, 51839, 67247, 68639, 72767, 77279, 79967, 81647, 84047, 84719, 89087, 92399, 95279, 96959, 98207
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3-1 = 11, 8*3-1 = 23 and 16*3-1 = 47 are primes, so 47 is a term.
		

Crossrefs

Subsequence of A127576.
Subsequences: A101797, A101997.

Programs

  • Mathematica
    16#-1&/@Select[Range[10000],AllTrue[{4#-1,8#-1,16#-1},PrimeQ]&] (* Harvey P. Dale, Jun 13 2015 *)
  • PARI
    is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 16*A101790(n) - 1 = 4*A101791(n) + 3 = 2*A101792(n) + 1. - Amiram Eldar, May 13 2024

A101995 Primes of the form 4*k-1 such that 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

179, 53639, 63419, 126839, 127139, 254279, 296099, 340919, 607319, 810539, 1069199, 1122659, 1598699, 1621619, 1820999, 1866239, 1912679, 1920959, 2045339, 2138399, 2157899, 2245319, 2278079, 2357219, 2667779, 2865839
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 179 is a term.
		

Crossrefs

Programs

  • Mathematica
    4 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101994(n) - 1. - Amiram Eldar, May 13 2024

A158035 a(n) = 2*A158034(n) + 1, prime numbers p for which f = (2^p - 2^((p - 1) / 2 + 1) + 4p^2 - 8p) / (2p^2 - 2p) is an integer.

Original entry on oeis.org

7, 23, 47, 167, 263, 359, 383, 479, 487, 503, 719, 839, 863, 887, 983, 1319, 1367, 1439, 1487, 1783, 1823, 2039, 2063, 2207, 2447, 2879, 2903, 2999, 3023, 3079, 3119, 3167, 3623, 3863, 4007, 4079, 4127, 4423, 4679, 4703, 4799, 4919, 5023, 5087, 5399, 5639
Offset: 1

Views

Author

Reikku Kulon, Mar 11 2009

Keywords

Comments

(p - 1) / 2 is often prime.

Crossrefs

Cf. A158034.
Cf. A002515 (Lucasian primes).
Cf. A145918 (exponential Sophie Germain primes).
Cf. A046318, A139876 (related to composite members of A158034: 243, 891, 1539, and 2511).

Programs

  • Maple
    A158035 := proc(n) local i,am,p,tren;
    am := [ ]:
    for i from 2 to n do
      p := ithprime(i):
      tren := (2^(p) - 2^((p - 1) / 2 + 1) + 4*p^(2) - 8*p) / (2*p^(2) - 2*p):
      if (type( tren, 'integer') = 'true') then
        am := [op(am),p]:
      fi
    od; RETURN(am) end:
    A158035(740); # Jani Melik, May 06 2013
  • Mathematica
    Select[Prime[Range[800]],IntegerQ[(2^#-2^((#-1)/2+1)+4#^2-8#)/(2#^2-2#)]&] (* Harvey P. Dale, Nov 08 2017 *)

A101795 Primes of the form 4*k-1 such that 8*k-1, 16*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

179, 359, 2699, 3539, 12119, 17159, 27479, 53639, 57839, 63419, 71399, 74699, 82499, 87539, 101399, 107279, 107699, 112919, 122099, 122819, 126839, 127139, 133499, 139439, 166739, 167759, 229739, 253679, 254279, 287219, 296099
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 179 is a term.
		

Crossrefs

Subsequence of A002145 and A101791.
Subsequence: A101995.

Programs

  • Mathematica
    Select[Table[4n-1,{n,75000}],AllTrue[(#+1)*{1,2,4,8}-1,PrimeQ]&] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101794(n) - 1. - Amiram Eldar, May 13 2024
Showing 1-10 of 42 results. Next