A054723 Prime exponents of composite Mersenne numbers.
11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 101, 103, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
Offset: 1
Examples
p=29 is included because 29 is prime, but 2^29-1 is *not* prime.
References
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 378.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2974
- Charles B. Barker, Proof that the Mersenne number M167 is composite, Bull. Amer. Math. Soc. 51 (1945), 389.
- H. S. Uhler, Note on the Mersenne numbers M157 and M167, Bull. Amer. Math. Soc. 52 (1946), 178.
Programs
-
Magma
[p: p in PrimesUpTo(350) | not IsPrime(2^p-1)]; // Bruno Berselli, Oct 11 2012
-
Mathematica
Select[Prime[Range[70]], ! PrimeQ[2^# - 1] &] (* Harvey P. Dale, Feb 03 2011 *) Module[{nn=15,mp},mp=MersennePrimeExponent[Range[nn]];Complement[ Prime[ Range[ PrimePi[Last[mp]]]],mp]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2019 *)
-
PARI
forprime(p=2, 1e3, if(!isprime(2^p-1), print1(p, ", "))) \\ Felix Fröhlich, Aug 10 2014
Extensions
Offset corrected by Arkadiusz Wesolowski, Jul 29 2012
Comments