A092559 Numbers k such that 2^k + 1 is a semiprime.
3, 5, 6, 7, 11, 12, 13, 17, 19, 20, 23, 28, 31, 32, 40, 43, 61, 64, 79, 92, 101, 104, 127, 128, 148, 167, 191, 199, 256, 313, 347, 356, 596, 692, 701, 1004, 1228, 1268, 1709, 2617, 3539, 3824, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239
Offset: 1
Keywords
Examples
11 is a term because 2^11 + 1 = 3 * 683. 3 is a term because 2^3 + 1 = 3^2. 10 is not a term because 2^10 + 1 = 5^2 * 41.
Links
- Giuseppe Coppoletta, Table of n, a(n) for n = 1..57
- C. Caldwell's The Top Twenty Wagstaff primes.
- S. S. Wagstaff, Jr., The Cunningham Project.
- Eric W. Weisstein, MathWorld: Catalan's Conjecture.
Crossrefs
Programs
-
Mathematica
Select[Range@ 200, PrimeOmega[2^# + 1] == 2 &] (* Michael De Vlieger, May 09 2017 *)
-
PARI
isok(n) = bigomega(2^n+1) == 2; \\ Michel Marcus, Oct 05 2013
Extensions
More terms from Cunningham project, Mar 23 2004
More terms from Don Reble, Mar 28 2010
a(49)-a(52) from Giuseppe Coppoletta, May 08 2017
Comments