A085724 Numbers k such that 2^k - 1 is a semiprime (A001358).
4, 9, 11, 23, 37, 41, 49, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1
Examples
11 is a member because 2^11 - 1 = 23*89.
References
- J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 22 2009]
- J. Earls, "Cole Semiprimes," Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 25 2009]
Links
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Mersenne Number
- Eric Weisstein's World of Mathematics, Semiprime
Programs
-
Mathematica
SemiPrimeQ[n_]:=(n>1) && (2==Plus@@(Transpose[FactorInteger[n]][[2]])); Select[Range[100],SemiPrimeQ[2^#-1]&] (Noe) Select[Range[1100],PrimeOmega[2^#-1]==2&] (* Harvey P. Dale, Feb 18 2018 *) Select[Range[250], Total[Last /@ FactorInteger[2^# - 1, 3]] == 2 &] (* Eric W. Weisstein, Jul 28 2022 *)
-
PARI
issemi(n)=bigomega(n)==2 is(n)=if(isprime(n), issemi(2^n-1), my(q); isprimepower(n,&q)==2 && ispseudoprime(2^q-1) && ispseudoprime((2^n-1)/(2^q-1))) \\ Charles R Greathouse IV, Jun 05 2013
Extensions
More terms from Zak Seidov, Feb 27 2004
More terms from Cunningham project, Mar 23 2004
More terms from the Cunningham project sent by Robert G. Wilson v and T. D. Noe, Feb 22 2006
a(41)-a(42) from Charles R Greathouse IV, Jun 05 2013
Comments