A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.
23, 89, 47, 178481, 233, 1103, 2089, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 193707721, 761838257287, 228479, 48544121, 212885833
Offset: 1
Examples
A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014 Triangle begins: 23, 89; 47, 178481; 233, 1103, 2089; 223, 616318177; 13367, 164511353; 431, 9719, 2099863; 2351, 4513, 13264529; 6361, 69431, 20394401;
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..577
- Sergey Nikitin, Euler-Fermat algorithm and some of its applications, 2018.
- Sam Wagstaff, The Cunningham Project
Programs
-
Mathematica
Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* Michael De Vlieger, Nov 20 2018 *)
-
PARI
forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ Jens Kruse Andersen, Jul 11 2014
Comments