cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.

Original entry on oeis.org

23, 89, 47, 178481, 233, 1103, 2089, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 193707721, 761838257287, 228479, 48544121, 212885833
Offset: 1

Views

Author

Felix Fröhlich, Jun 28 2014

Keywords

Comments

Subsequence of A060443.
Prime factors of composite Mersenne numbers; A089162 with the Mersenne primes A000668 removed. - Jens Kruse Andersen, Jul 11 2014

Examples

			A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014
Triangle begins:
23, 89;
47, 178481;
233, 1103, 2089;
223, 616318177;
13367, 164511353;
431, 9719, 2099863;
2351, 4513, 13264529;
6361, 69431, 20394401;
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* Michael De Vlieger, Nov 20 2018 *)
  • PARI
    forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ Jens Kruse Andersen, Jul 11 2014

A289982 Lesser member p of twin primes in A054723 (Prime exponents of composite Mersenne numbers).

Original entry on oeis.org

41, 71, 101, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607, 1619, 1667, 1697, 1721, 1787, 1871, 1877
Offset: 1

Views

Author

Muniru A Asiru, Jul 17 2017

Keywords

Comments

2^p-1 is composite. p is the lesser of twin primes in A001359 and a prime exponent of a Mersenne number in A054723.

Examples

			p=41 is a member because 41 is a lesser of twin prime and 2^41 - 1 = 13367*164511353 is composite.
Similarly, p=227 is a member because 227 is a lesser of twin prime and 2^227 - 1 is composite.
		

Crossrefs

Subsequence of A054723.

Programs

  • GAP
    P1:=Difference(Filtered([1..100000],IsPrime),[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701,23209, 44497, 86243]);;
    P2:=List([1..Length(P1)-1],i->[P1[i],P1[i+1]]);;
    P3:=List(Positions(List(P2,i->i[2]-i[1]),2),i->P2[i][1]);
    
  • Mathematica
    Function[s, Flatten@ Map[s[[#, 1]] &, Position[Most@ s, d_ /; Quiet@ Differences@ d == {2}, {1}]]]@ Partition[#, 2, 1] &@ Select[Prime@ Range@ 360, ! PrimeQ[2^# - 1] &] (* Michael De Vlieger, Jul 17 2017 *)
    Select[Partition[Module[{nn=20,mp},mp=MersennePrimeExponent[Range[nn]];Complement[Prime[Range[PrimePi[Last[mp]]]],mp]],2,1],#[[2]]-#[[1]]==2 && AllTrue[#,PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2019 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !isprime(2^n-1) && !isprime(2^(n+2)-1); \\ Michel Marcus, Jul 19 2017

A001262 Strong pseudoprimes to base 2.

Original entry on oeis.org

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737
Offset: 1

Views

Author

Keywords

Comments

The number 2^k-1 is in the sequence iff k is in A054723 or in A001567. - Thomas Ordowski, Sep 02 2016
The number (2^k+1)/3 is in the sequence iff k is in A127956. - Davide Rotondo, Aug 13 2021

Examples

			From _Michael B. Porter_, Sep 04 2016: (Start)
For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence.
For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. (End)
		

References

  • R. K. Guy, Unsolved Problems Theory Numbers, A12.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.

Crossrefs

Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).
Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).

Programs

  • Maple
    A007814 := proc(n) padic[ordp](n,2) ; end proc:
    isStrongPsp := proc(n,b) local d,s,r; if type(n,'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d,n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d,n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:
    isA001262 := proc(n) isStrongPsp(n,2) ; end proc:
    for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:
    # R. J. Mathar, Apr 05 2011
  • Mathematica
    sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
  • PARI
    isStrongPsp(n,b)={
            my(s,d,r,bm) ;
            if( (n% 2) ==0 || n <=1, return(0) ;) ;
            if(isprime(n), return(0) ;) ;
            s = valuation(n-1,2) ;
            d = (n-1)/2^s ;
            bm = Mod(b,n)^d ;
            if ( bm == Mod(1,n), return(1) ;) ;
            for(r=0,s-1,
                    bm = Mod(b,n)^d ;
                    if ( bm == Mod(-1,n),
                            return(1) ;
                    ) ;
                    d *= 2;
            ) ;
            return(0);
    }
    isA001262(n)={
            isStrongPsp(n,2)
    }
    {
    for(n=1,10000000000,
        if(isA001262(n),
            print(n)
        ) ;
    ) ;
    } \\ R. J. Mathar, Mar 07 2012
    
  • PARI
    is_A001262(n,a=2)={ (bittest(n,0) && !isprime(n) && n>8) || return; my(s=valuation(n-1,2)); if(1==a=Mod(a,n)^(n>>s),return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012

Extensions

More terms from David W. Wilson, Aug 15 1996

A065341 Mersenne composites: 2^prime(m) - 1 is not a prime.

Original entry on oeis.org

2047, 8388607, 536870911, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 147573952589676412927, 2361183241434822606847, 9444732965739290427391
Offset: 1

Views

Author

Labos Elemer, Oct 30 2001

Keywords

Comments

For the number of prime factors in a(n) see A135975. For indices of primes n in composite 2^prime(n)-1 see A135980. For smallest prime divisors of Mersenne composites see A136030. For largest prime divisors of Mersenne composites see A136031. For largest divisors see A145097. - Artur Jasinski, Oct 01 2008
All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - Amiram Eldar, Jul 24 2021

Examples

			2^11 - 1 = 2047 = 23*89.
		

Crossrefs

Programs

  • Maple
    A065341 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (not isprime(i)) then
       RETURN (i)
    fi: end: seq(A065341(n), n=1..21); # Jani Melik, Feb 09 2011
  • Mathematica
    Select[Table[2^Prime[n]-1,{n,30}],!PrimeQ[#]&] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = 2^A054723(n) - 1.

A176549 Primes of the form 2*n^2+6*n+1.

Original entry on oeis.org

37, 109, 541, 757, 1009, 1297, 1621, 2377, 6841, 7561, 8317, 9109, 11701, 12637, 15661, 16741, 19009, 23977, 25309, 28081, 34057, 38917, 40609, 42337, 44101, 47737, 51517, 55441, 57457, 59509, 65881, 70309, 72577, 82009, 84457, 99901
Offset: 1

Views

Author

Vincenzo Librandi, Apr 20 2010

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 7 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Primes in A059993.
Subsequence of A093838.
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): this sequence (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is 2*n^2+6*n+1]; // Vincenzo Librandi, Jul 26 2012
  • Mathematica
    Select[Table[2 n^2 + 6 n + 1, {n, 2000}], PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)

Extensions

Removed an obviously incorrect part of the definition - R. J. Mathar, Apr 21 2010

A217494 Primes of the form 2*n^2 + 34*n + 15.

Original entry on oeis.org

631, 883, 1171, 2251, 2683, 8191, 9811, 12511, 20071, 25183, 30871, 33931, 38791, 40483, 57331, 61471, 70183, 81883, 94483, 105211, 125371, 150571, 157231, 167491, 188983, 292483, 315883, 340183, 360271, 423991, 440731, 469351, 481051, 510931
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+259 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+34*n+15];
  • Mathematica
    Select[Table[2 n^2 + 34 n + 15, {n, 500}], PrimeQ]

A135975 Number of prime factors (without multiplicity) in Mersenne composites A065341.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4, 3, 6, 4, 3, 4, 3, 4, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - Gord Palameta, Aug 06 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
    (PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* Jean-François Alcover, Aug 13 2014 *)
  • PARI
    forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A001221(A065341(n)). - Michel Marcus, Aug 07 2018

Extensions

a(29)-a(46) from Felix Fröhlich, Aug 12 2014
a(47)-a(100) from Gord Palameta, Aug 07 2018

A217496 Primes of the form 2*n^2 + 50*n + 23.

Original entry on oeis.org

23, 131, 191, 911, 1223, 1451, 1571, 1823, 3323, 3671, 3851, 5651, 6323, 6791, 7523, 8291, 9371, 10223, 12671, 15731, 16091, 16823, 25931, 28751, 29723, 39191, 43223, 50591, 53831, 55823, 60611, 62723, 64151, 64871, 68531, 73823, 77723, 80111, 87491, 90023
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+579 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 2*n^2 + 50*n + 23];
  • Mathematica
    Select[Table[2 n^2 + 50 n + 23, {n, 0, 500}], PrimeQ]

A217497 Primes of the form 2*n^2 + 54*n + 25.

Original entry on oeis.org

421, 673, 2473, 4561, 5821, 9601, 12301, 14281, 19861, 30661, 32173, 33721, 61261, 67741, 84121, 94273, 107773, 110581, 122173, 134341, 170773, 203821, 207673, 223441, 227473, 265381, 274201, 287701, 344941, 365173, 391273, 396601, 418273, 423781, 469141
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 679 is a square. - Vincenzo Librandi, Apr 10 2015
Equivalently, primes of the form 36*n^2 + 36*n + 9. - Charles R Greathouse IV, Jul 24 2024

Crossrefs

Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+54*n+25];
    
  • Mathematica
    Select[Table[2 n^2 + 54 n + 25, {n, 500}], PrimeQ]
  • PARI
    list(lim)=my(v=List()); for(n=2,(sqrtint(lim\1*2+679)-27)\6, my(p=18*n^2 + 162*n + 25); if(isprime(p), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 24 2024

Formula

a(n) >> n^2 log n. - Charles R Greathouse IV, Jul 24 2024

A217498 Primes of the form 2*n^2 + 58*n + 27.

Original entry on oeis.org

151, 367, 619, 907, 1231, 1987, 2887, 3391, 3931, 4507, 5119, 6451, 7927, 8719, 9547, 11311, 13219, 15271, 17467, 21031, 22291, 24919, 27691, 29131, 32119, 35251, 36871, 41947, 43711, 55051, 59119, 63331, 76831, 81619, 84067, 89071, 94219, 96847, 104947
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 787 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+58*n+27];
  • Mathematica
    Select[Table[2 n^2 + 58 n + 27, {n, 500}], PrimeQ]
Showing 1-10 of 41 results. Next