cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A135975 Number of prime factors (without multiplicity) in Mersenne composites A065341.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4, 3, 6, 4, 3, 4, 3, 4, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - Gord Palameta, Aug 06 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
    (PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* Jean-François Alcover, Aug 13 2014 *)
  • PARI
    forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A001221(A065341(n)). - Michel Marcus, Aug 07 2018

Extensions

a(29)-a(46) from Felix Fröhlich, Aug 12 2014
a(47)-a(100) from Gord Palameta, Aug 07 2018

A135977 Mersenne composites (A065341) with exactly 3 prime factors.

Original entry on oeis.org

536870911, 8796093022207, 140737488355327, 9007199254740991, 2361183241434822606847, 9444732965739290427391, 604462909807314587353087
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

Formula

a(n) = 2^A344515(n) - 1. - Amiram Eldar, May 23 2021

A135976 Mersenne composites (A065341) with exactly 2 prime factors.

Original entry on oeis.org

2047, 8388607, 137438953471, 2199023255551, 576460752303423487, 147573952589676412927, 9671406556917033397649407, 158456325028528675187087900671, 2535301200456458802993406410751
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135976 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) = 2) then
       RETURN (i)
    fi: end: [ seq(A135976(n), n=1..26) ]; # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
  • PARI
    forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = 2^A135978(n) - 1. - Amiram Eldar, May 23 2021

A145097 a(n) is the largest proper divisor of the Mersenne composite A065341(n).

Original entry on oeis.org

89, 178481, 2304167, 616318177, 164511353, 20408568497, 59862819377, 1416003655831, 3203431780337, 761838257287, 10334355636337793, 21514198099633918969, 224958284260258499201, 57912614113275649087721
Offset: 1

Views

Author

Artur Jasinski, Oct 01 2008

Keywords

Comments

Note that not all the largest divisors are primes.
Which divisors are prime? - see A145099. - Artur Jasinski, Oct 04 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[m = 2^Prime[n] - 1; If[PrimeQ[m], null, AppendTo[a, Divisors[m][[ -2]]]], {n, 1, 40}]; a

Extensions

Name clarified by Amiram Eldar, Mar 12 2020

A136032 Number of prime factors (with multiplicity) of Mersenne composites (A065341).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Comments

If the conjecture that all Mersenne composites are squarefree is true, then this sequence is identical to A135975. - Felix Fröhlich, Aug 24 2014

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[n] && !PrimeQ[2^n - 1], w = 2^n - 1; c = FactorInteger[w]; d = Length[c]; b = 0; Do[b = b + c[[k]][[2]], {k, 1, d}]; AppendTo[a, b]], {n, 2, 150}]; a
    PrimeOmega/@Select[2^Prime[Range[100]]-1,!PrimeQ[#]&] (* Harvey P. Dale, Nov 01 2016 *)
  • PARI
    forprime(p=2, 1e3, if(!ispseudoprime(2^p-1), print1(bigomega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 24 2014

Formula

a(n) = A001222(A065341(n)). - Michel Marcus, Aug 24 2014

Extensions

More terms from Michel Marcus, Nov 04 2013
Definition adjusted by Felix Fröhlich, Aug 24 2014
More terms from Felix Fröhlich, Aug 24 2014

A135386 Mersenne composites A065341 with 4 or more prime factors.

Original entry on oeis.org

10384593717069655257060992658440191, 2854495385411919762116571938898990272765493247, 182687704666362864775460604089535377456991567871
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135386 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) > 3) then
       RETURN (i)
    fi: end: seq(A135386(n), n=1..37); # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d >3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

A001348 Mersenne numbers: 2^p - 1, where p is prime.

Original entry on oeis.org

3, 7, 31, 127, 2047, 8191, 131071, 524287, 8388607, 536870911, 2147483647, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 2305843009213693951, 147573952589676412927, 2361183241434822606847
Offset: 1

Views

Author

Keywords

Comments

Mersenne numbers A000225 whose indices are primes. - Omar E. Pol, Aug 31 2008
All terms are of the form 4k-1. - Paul Muljadi, Jan 31 2011
Smallest number with Hamming weight A000120 = prime(n). - M. F. Hasler, Oct 16 2018
The 5th, 9th, 10th, ... terms are not prime. See A000668 and A065341 for the primes and for the composites in this sequence. - M. F. Hasler, Nov 14 2018 [corrected by Jerzy R Borysowicz, Apr 08 2025]
Except for the first term 3: all prime factors of 2^p-1 must be 1 or -1 (mod 8), and 1 (mod 2p). - William Hu, Mar 10 2024

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 16.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [2^NthPrime(n)-1: n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    A001348 := n -> 2^(ithprime(n))-1: seq (A001348(n), n=1..18);
  • Mathematica
    Table[2^Prime[n]-1, {n, 20}] (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jun 10 2011
    
  • Python
    from sympy import prime
    def a(n): return 2**prime(n)-1
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 28 2022

Formula

a(n) = 2^A000040(n) - 1, n >= 1. - Wolfdieter Lang, Oct 26 2014
a(n) = A000225(A000040(n)). - Omar E. Pol, Aug 31 2008
A000668(n) = a(A016027(n)). - Omar E. Pol, Jun 29 2012
Sum_{n>=1} 1/a(n) = A262153. - Amiram Eldar, Nov 20 2020
Product_{n>=1} (1 - 1/a(n)) = A184085. - Amiram Eldar, Nov 22 2022

A050217 Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.

Original entry on oeis.org

341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
Offset: 1

Views

Author

Keywords

Comments

Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016

References

  • W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.

Crossrefs

A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016

Programs

  • Maple
    filter:= = proc(n)
        not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Sep 13 2016
  • Mathematica
    Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
  • PARI
    is(n)=if(isprime(n), return(0)); fordiv(n,d, if(Mod(2,d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016

A135978 Primes p such that 2^p-1 has exactly 2 prime factors.

Original entry on oeis.org

11, 23, 37, 41, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

a(40)>=1277. - Amiram Eldar, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, Prime[n]]]], {n, 1, 40}]; k

Extensions

a(17)-a(37) from Arkadiusz Wesolowski, Jan 26 2012
a(38)-a(39) from Amiram Eldar, Sep 29 2018

A135979 Indices n such that 2^prime(n)-1 has exactly 2 distinct prime factors.

Original entry on oeis.org

5, 9, 12, 13, 17, 19, 23, 25, 26, 27, 29, 32, 33, 34, 35, 39, 45, 46, 49, 53, 57, 58, 60, 62, 69, 74, 75, 82, 88, 93, 99, 129, 140, 152, 164, 166, 168, 178, 179
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

a(40)>=206. - Amiram Eldar, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, n]]], {n, 1, 40}]; k
    Select[Range[40],PrimeNu[2^Prime[#]-1]==2&] (* Harvey P. Dale, Jul 07 2013 *)

Formula

Equals {k: A001221(A001348(k)) = 2}. a(n) = A049084(A135978(n)). - R. J. Mathar, May 03 2008

Extensions

Edited by R. J. Mathar, May 03 2008
a(17)-a(34) from Donovan Johnson, Jun 14 2009
a(35)-a(39) from Amiram Eldar, Sep 29 2018
Showing 1-10 of 20 results. Next