cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002547 Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).

Original entry on oeis.org

1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
Offset: 1

Views

Author

Keywords

Comments

Numerators of coefficients for numerical differentiation.

Examples

			H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
		

References

  • W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
  • A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))); # G. C. Greubel, Jul 03 2019
  • Magma
    [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
    
  • Maple
    H := proc(a, b) option remember; local m, p, q, r, s;
    if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
    p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
    A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
    seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
  • Mathematica
    a[n_]:= Numerator[HarmonicNumber[n]/(n+1)]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
    
  • PARI
    A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
    
  • Sage
    [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
    

Formula

G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019

Extensions

More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Simpler definition from Alexander Adamchuk, Oct 31 2004
Offset corrected by Gary Detlefs, Sep 08 2011
Definition corrected by M. F. Hasler, Jul 03 2019