cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002663 a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, 268431773, 536866822, 1073737298
Offset: 0

Views

Author

Keywords

Comments

Starting with "1" = eigensequence of a triangle with bin(n,4), A000332 as the left border: (1, 5, 15, 35, 70, ...) and the rest 1's. - Gary W. Adamson, Jul 24 2010
The Kn25 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the four leading zeros. - Johannes W. Meijer, Aug 14 2011
(1 + 6x + 22x^2 + 64x^3 + ...) = (1 + 3x + 6x^2 + 10x^3 + ...) * (1 + 3x + 7x^2 + 15x^3 + ...). - Gary W. Adamson, Mar 14 2012
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Number of binary sequences with at least four 0's. - Enrique Navarrete, Jul 23 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A055248(n, 4). Partial sums of A002662.

Programs

  • Haskell
    a002663 n = a002663_list !! n
    a002663_list = map (sum . drop 4) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
    
  • Magma
    [2^n - Binomial(n,0)- Binomial(n,1) - Binomial(n,2) - Binomial(n,3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    A002663 := proc(n): 2^n - add(binomial(n,k),k=0..3) end: seq(A002663(n), n=0..30); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;AppendTo[lst,s4];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n + 4, k + 4], {k, 0, n}], {n, -4, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    a(n)=(6*2^n-n^3-5*n-6)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 2^n - A000125(n).
G.f.: x^4/((1-2*x)*(1-x)^4). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n} binomial(n,k+4) = Sum_{k=4..n} binomial(n,k). - Paul Barry, Aug 23 2004
a(n) = 2*a(n-1) + binomial(n-1,3). - Paul Barry, Aug 23 2004
a(n) = (6*2^n - n^3 - 5*n - 6)/6. - Mats Granvik, Gary W. Adamson, Feb 17 2010
From Enrique Navarrete, Jul 23 2025: (Start)
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
E.g.f.: exp(x)*(exp(x) - 1 - x - x^2/2 - x^3/6). (End)