cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A169971 Erroneous version of A002689.

Original entry on oeis.org

1, 6, 8, 180, 32, 10080, 3456, 453600, 115200, 47900160, 71680, 217945728000, 36578304000, 2241727488000, 45984153600, 2000741783040000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A093048 a(n) = n minus exponent of 2 in n, with a(0) = 0.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 5, 7, 5, 9, 9, 11, 10, 13, 13, 15, 12, 17, 17, 19, 18, 21, 21, 23, 21, 25, 25, 27, 26, 29, 29, 31, 27, 33, 33, 35, 34, 37, 37, 39, 37, 41, 41, 43, 42, 45, 45, 47, 44, 49, 49, 51, 50, 53, 53, 55, 53, 57, 57, 59, 58, 61, 61, 63, 58, 65, 65, 67, 66, 69
Offset: 0

Views

Author

Ralf Stephan, Mar 16 2004

Keywords

Examples

			G.f. = x + x^2 + 3*x^3 + 2*x^4 +  5*x^5 + 5*x^6 + 7*x^7 + 5*x^8 + 9*x^9 + ... - _Michael Somos_, Jan 25 2020
		

Crossrefs

a(n) = n - A007814(n) = A093049(n) + 1, n > 0.
a(n) is the exponent of 2 in A002689(n-1), A014070(n), A060690(n), A075101(n).
See also A084623.

Programs

  • Maple
    A093048 := proc(n)
        n-A007814(n) ;
    end proc: # R. J. Mathar, Jul 24 2014
  • Mathematica
    a[ n_] := If[ n == 0, n - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
  • PARI
    a(n) = if(n<1, 0, if(n%2==0, a(n/2) + n/2 - 1, n))
    
  • PARI
    a(n) = n - valuation(n, 2) \\ Jianing Song, Oct 24 2018
    
  • Python
    def A093048(n): return n-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022

Formula

Recurrence: a(2n) = a(n) + n - 1, a(2n+1) = 2n + 1.
G.f.: Sum_{k>=0} (t*(t^3 + t^2 + 1)/(1 - t^2)^2), with t = x^2^k.
a(n) = Sum_{k=1..n} sign(n mod 2^k). - Wesley Ivan Hurt, May 09 2021

A193546 Numerator of the third row of the inverse Akiyama-Tanigawa algorithm from 1/n.

Original entry on oeis.org

1, 1, 7, 17, 41, 731, 8563, 27719, 190073, 516149, 1013143139, 1519024289, 14108351869, 14399405173, 23142912688967, 83945247395407, 84894728616107, 3204549982389941, 262488267575333123, 9027726081126601799, 2026692221793223022131, 1375035304877251309001
Offset: 0

Views

Author

Paul Curtz, Aug 27 2011

Keywords

Comments

Akiyama-Tanigawa from 1/n gives Bernoulli A164555(n)/A027642(n).
Reciprocally
1, 1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, 5257/17280,
1/2, 1/6, 1/8, 19/180, 3/32, 863/10080, 275/3456,
1/3, 1/12, 7/120, 17/360, 41/1008, 731/20160, 8563/259200,
1/4, 1/20, 1/30, 11/420, 89/4032,5849/302400,
1/5, 1/30, 3/140, 83/5040, 59/4320,
1/6, 1/42, 5/336,
1/7, 1/56,
1/8.
First row: A002208/A002209 or reduced A002657(n)/A091137(n) unsigned.
Second row: A002206(n+1)/A002689(n) unsigned. See A141417(n) and A174727(n).
Third row: a(n)/A194506(n).

Crossrefs

Cf. A194506 (denominator).

Programs

  • Maple
    read("transforms3") ;
    L := [seq(1/n,n=1..20)] ;
    L1 := AKIYAMATANIGAWAi(L) ;
    L2 := AKIYATANI(L1) ;
    L3 := AKIYATANI(L2) ;
    apply(numer,%) ; # R. J. Mathar, Aug 27 2011
    # second Maple program:
    b:= proc (n, k) option remember;
          `if`(n=0, 1/(k+1), b(n-1, k) -b(n-1, k+1)/n)
        end:
    a:= n-> numer(b(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 27 2011
  • Mathematica
    a[n_, 0] := 1/(n+1); a[n_, m_] := a[n, m] = a[n, m-1] - a[n+1, m-1]/m; Table[a[2, m], {m, 0, 21}] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
    Numerator@Table[(-1)^n (n + 1) Integrate[FunctionExpand[x Binomial[x, n + 1]], {x, 0, 1}], {n, 0, 20}] (* Vladimir Reshetnikov, Feb 01 2017 *)

Formula

a(n)/A194506(n) = (-1)^n * (n+1) * Integral_{0Vladimir Reshetnikov, Feb 01 2017

A174727 a(n) = A091137(n+1)/(n+1).

Original entry on oeis.org

2, 6, 8, 180, 288, 10080, 17280, 453600, 806400, 47900160, 87091200, 217945728000, 402361344000, 2241727488000, 4184557977600, 2000741783040000, 3766102179840000, 2838385676206080000, 5377993912811520000, 1686001091666411520000, 3211430650793164800000, 423033001181754163200000
Offset: 0

Views

Author

Paul Curtz, Mar 28 2010

Keywords

Comments

Previous name: Inverse Akiyama-Tanigawa algorithm. From a column instead of a row. Bernoulli case A164555/A027642. We start from column 1, 1/2, 1/3, 1/4, 1/5 = A000012/A000027. First row: 1) (unreduced) 1, 1/2, 5/12, 9/24, 251/720 = A002657/A091137 (Cauchy from Bernoulli) (*); 2) (reduced) 1, 1/2, 5/12, 3/8, 251/720 = A002208/A002209 (Stirling and Bernoulli). Unreduced second row: 1/2, 1/6, 1/8, 19/180, 27/288, 863/10080 = A141417(n+1)/a(n).
(*) Reference page 56 (first row) and page 36 (upper main diagonal). From J. C. Adams (and Bashforth) numerical integration. See A165313 and A147998. See A002206 logarithm numbers (Gregory).

References

  • P. Curtz, Intégration numérique des systèmes différentiels .. . Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.

Crossrefs

Programs

  • Mathematica
    A091137[n_] := A091137[n] = Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]*A091137[n-1]; A091137[0] = 1; a[n_] := A091137[n+1]/(n+1); Table[a[n], {n, 0, 18}] (* Jean-François Alcover_, Aug 14 2012 *)
  • PARI
    f(n) = my(r =1); forprime(p=2, n+1, r*=p^(n\(p-1))); r; \\ A091137
    a(n) = f(n+1)/(n+1); \\ Michel Marcus, Jun 30 2019

Formula

a(n) = A091137(n+1)/(n+1).

Extensions

Extended up to a(18) by Jean-François Alcover, Aug 14 2012
New name and more terms from Michel Marcus, Jun 30 2019
Showing 1-4 of 4 results.