A002812 a(n) = 2*a(n-1)^2 - 1, starting a(0) = 2.
2, 7, 97, 18817, 708158977, 1002978273411373057, 2011930833870518011412817828051050497, 8095731360557835890888779535060256832479295062749579257164654370487894017
Offset: 0
Examples
G.f. = 2 + 7*x + 97*x^2 + 18817*x^3 + 708158977*x^4 + ...
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
- W. Sierpiński, Sur les développements systématiques des nombres en produits infinis, in Œuvres choisies, tome 1, PWN Editions scientifiques de Pologne, 1974.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10
- Georg Cantor, Zwei Sätze über eine gewisse Zerlegung der Zahlen in unendliche Producte, Zeitschrift für Mathematik und Physik. Band 14, 1869, S. 152-158. (See page 155, II, error in the fourth term.)
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
- M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
- Jeffrey Shallit, Rational numbers with non-terminating, non-periodic modified Engel-type expansions, Fib. Quart., 31 (1993), 37-40.
- Eric Weisstein's World of Mathematics, Newton's Iteration
- Index entries for sequences related to Engel expansions
Programs
-
GAP
a:=[2];; for n in [2..10] do a[n]:=2*a[n-1]^2-1; od; a; # Muniru A Asiru, Aug 12 2018
-
Magma
I:=[2]; [n le 1 select I[n] else 2*Self(n-1)^2-1: n in [1..8]]; // Vincenzo Librandi, Dec 19 2011
-
Maple
a:=n->((2+sqrt(3))^(2^n)+(2-sqrt(3))^(2^n))/2: seq(floor(a(n)),n=0..10); # Muniru A Asiru, Aug 12 2018
-
Mathematica
Table[((2 + Sqrt[3])^2^n + (2 - Sqrt[3])^2^n)/2, {n, 0, 7}] (* Bruno Berselli, Dec 20 2011 *) NestList[2#^2-1&,2,10] (* Harvey P. Dale, May 04 2013 *) a[ n_] := If[ n < 0, 0, ChebyshevT[2^n, 2]]; (* Michael Somos, Dec 06 2016 *)
-
PARI
{a(n) = if( n<1, 2 * (n==0), 2 * a(n-1)^2 - 1)}; /* Michael Somos, Mar 14 2004 */
-
PARI
/* Roots by recursion. Find first root of ax^2 + b^x + c */ rroot2(a,b,c,p) = { local(x=1,x1=1,j); for(j=1,p, x1=x; x=-c/(a*x+b); x=(x1+x)/2; /* Let x be the average of the last 2 values */ print1(numerator(x)","); ); } \\ Cino Hilliard, Sep 28 2008
Formula
a(n) = A001075(2^n).
a(n) = ((2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n))/2. - Bruno Berselli, Dec 20 2011
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n >= 0} (1 - 1/(2*a(n))).
sqrt(3) = Product_{n >= 0} (1 + 1/a(n)).
a(n) = (1/2)*A003010(n). (End)
a(n) = cos(2^n*arccos(2)). - Peter Luschny, Oct 12 2022
a(n) = A002531(2^(n+1)). - Robert FERREOL, Apr 13 2023
Comments