A002813 a(0) = 4; for n > 0, a(n) = a(n-1)^3 - 3*a(n-1)^2 + 3.
4, 19, 5779, 192900153619, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155219
Offset: 0
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..8
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
- J. Shallit Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion
Programs
-
Magma
[Lucas(2*3^n)+1: n in [0..5]]; // Vincenzo Librandi, Jul 20 2011
-
Mathematica
NestList[#^3-3#^2+3&,4,6] (* Harvey P. Dale, Jul 19 2011 *)
-
PARI
a(n)=if(n<1,4*(n==0),a(n-1)^3-3*a(n-1)^2+3)
-
PARI
a(n)=if(n<0,0,n=2*3^n;fibonacci(n+1)+fibonacci(n-1)+1)
Formula
a(n) = L(2*3^n)+1 where L=Lucas numbers.
a(n) = L(3^(n+1))/L(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = A001999(n)+1. - R. J. Mathar, Apr 22 2007
From Peter Bala, Nov 22 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1.
(1/5)*sqrt(5) = Product_{n = 0..oo} (1 - 2/a(n)).
A006267(n+1) = Product_{k = 0..n} a(k).
A002814(n+1) = a(n) - 2. (End)
Comments