A002814 For n > 1: a(n) = a(n-1)^3 + 3a(n-1)^2 - 3; a(0) = 1, a(1) = 2.
1, 2, 17, 5777, 192900153617, 7177905237579946589743592924684177
Offset: 0
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
- M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
- J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
Programs
-
Haskell
a002814 n = a002814_list !! n a002814_list = 1 : zipWith div (tail xs) xs where xs = map a000045 a000244_list -- Reinhard Zumkeller, Nov 24 2012
-
Mathematica
Join[{1}, NestList[#^3+3#^2-3&,2,5]] (* Harvey P. Dale, Apr 01 2011 *)
-
Maxima
a[0]:1$ a[1]:2$ a[n]:=a[n-1]^3 + 3*a[n-1]^2-3$ A002814(n):=a[n]$ makelist(A002814(n),n,0,6); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=if(n<2,max(0,n+1),a(n-1)^3+3*a(n-1)^2-3)
Formula
a(n) = Fibonacci(3^n)/Fibonacci(3^(n-1)). - Henry Bottomley, Jul 10 2001
a(n+1) = 5*(f(n))^2 - 3, where f(n) = Fibonacci(3^n) = product of first n entries. - Lekraj Beedassy, Jun 16 2003
From Artur Jasinski, Oct 05 2008: (Start)
a(n+2) = (G^(3^(n + 1)) - (1 - G)^(3^(n + 1)))/((G^(3^n)) - (1 - G)^(3^n)) where G = (1 + sqrt(5))/2;
From Peter Bala, Nov 15 2012: (Start)
a(n+1) = (1/2*(3 + sqrt(5)))^(3^n) + (1/2*(3 - sqrt(5)))^(3^n) - 1.
The sequence b(n):= a(n) + 2 is a solution to the recurrence b(n+1) = b(n)^3 - 3*b(n)^2 + 3 with b(1) = 4.
Other recurrence equations:
a(n+1) = -3 + 5*(Product_{k = 1..n} a(k)^2) with a(1) = 2.
a(n+1) = 1 + Product_{k = 1..n} (a(k) + 2)^2 with a(1) = 2.
Thus Y := Product_{k = 1..n} a(k) and X := Product_{k = 1..n} (a(k) + 2) give a solution to the Diophantine equation X^2 - 5*Y^2 = -4.
sqrt(5) = Product_{n >= 1} (1 + 2/a(n)). The rate of convergence is cubic. Fine remarks that twelve factors of the product would give well over 300,000 correct decimal digits for sqrt(5).
5 - {Product_{n = 1..N} (1 + 2/a(n))}^2 = 20/(a(N+1) + 3). (End)
a(n) = 2*T(3^(n-1),3/2) - 1 for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 06 2022
Extensions
Definition improved by Reinhard Zumkeller, Feb 29 2012
Comments