cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002944 a(n) = LCM(1,2,...,n) / n.

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 12252240, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1

Views

Author

Keywords

Comments

Equals LCM of all numbers of (n-1)-st row of Pascal's triangle [Montgomery-Breusch]. - J. Lowell, Apr 16 2014. Corrected by N. J. A. Sloane, Sep 04 2019
Williams proves that a(n+1) = A034386(n) for n=2, 11 and 23 only. This is trivially the case for n=0 and 1, too. - Michel Marcus, Apr 16 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025527 and A025537.
Cf. A056606 (squarefree kernel).

Programs

  • Haskell
    a002944 n = a003418 n `div` n  -- Reinhard Zumkeller, Mar 16 2015
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n)); f:=n->A003418(n)/n;
    BB:=n->sum(1/sqrt(k), k=1..n): a:=n->floor(denom(BB(n))/n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 29 2007
  • Mathematica
    Table[Apply[LCM,Range[n]]/n,{n,1,30}]  (* Geoffrey Critzer, Feb 10 2013 *)
  • PARI
    a(n) = lcm(vector(n, i, i))/n; \\ Michel Marcus, Apr 16 2014
    

Formula

a(n) = A003418(n) / n.
a(n) = LCM of C(n-1, 0), C(n-1, 1), ..., C(n-1, n-1). [Montgomery-Breusch] [Corrected by N. J. A. Sloane, Jun 11 2008]
Equally, a(n+1) = LCM_{k=0..n} binomial(n,k). - Franklin T. Adams-Watters, Jul 05 2009

Extensions

More terms from Jud McCranie, Jan 17 2000
Edited by N. J. A. Sloane, Jun 11 2008 and Sep 04 2019