A002947 Continued fraction for cube root of 4.
1, 1, 1, 2, 2, 1, 3, 2, 3, 1, 3, 1, 30, 1, 4, 1, 2, 9, 6, 4, 1, 1, 2, 7, 2, 3, 2, 1, 6, 1, 1, 1, 25, 1, 7, 7, 1, 1, 1, 1, 266, 1, 3, 2, 1, 3, 60, 1, 5, 1, 8, 5, 6, 1, 4, 20, 1, 4, 1, 1, 14, 1, 4, 4, 1, 1, 1, 1, 7, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 1, 3, 1, 34, 8, 2, 10, 6, 3, 1, 2, 31, 1, 1, 1, 4, 3, 44, 1, 45
Offset: 0
Examples
4^(1/3) = 1.58740105196819947... = 1 + 1/(1 + 1/(1 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, May 08 2009
References
- H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harry J. Smith, Table of n, a(n) for n = 0..19999
- S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
- S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
- Herman P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
- Gang Xiao, Contfrac
- Index entries for continued fractions for constants
Crossrefs
Cf. A005480 (decimal expansion). - Harry J. Smith, May 08 2009
Programs
-
Magma
[ContinuedFraction(4^(1/3))]; // Vincenzo Librandi, Aug 02 2015
-
Mathematica
ContinuedFraction[4^(1/3), 80] (* Alonso del Arte, Jul 24 2015 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(4^(1/3)); for (n=1, 20000, write("b002947.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Offset changed by Andrew Howroyd, Jul 04 2024