cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005480 Decimal expansion of cube root of 4.

Original entry on oeis.org

1, 5, 8, 7, 4, 0, 1, 0, 5, 1, 9, 6, 8, 1, 9, 9, 4, 7, 4, 7, 5, 1, 7, 0, 5, 6, 3, 9, 2, 7, 2, 3, 0, 8, 2, 6, 0, 3, 9, 1, 4, 9, 3, 3, 2, 7, 8, 9, 9, 8, 5, 3, 0, 0, 9, 8, 0, 8, 2, 8, 5, 7, 6, 1, 8, 2, 5, 2, 1, 6, 5, 0, 5, 6, 2, 4, 2, 1, 9, 1, 7, 3, 2, 7, 3, 5, 4, 4, 2, 1, 3, 2, 6, 2, 2, 2, 0, 9, 5, 7, 0, 2, 2, 9, 3, 4, 7, 6
Offset: 1

Views

Author

N. J. A. Sloane; entry revised Apr 23 2006

Keywords

Comments

Let h = 4^(1/3). Then (h+1,0) is the x-intercept of the shortest segment from the x-axis through (1,2) to the y-axis; see A197008. - Clark Kimberling, Oct 10 2011
Let h = 4^(1/3). The relative maximum of xy(x+y)=1 is (-1/sqrt(h), h). - Clark Kimberling, Oct 05 2020

Examples

			1.587401051968199474751705639272308260391493327899853...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952), p. 173-176.

Crossrefs

Cf. A002947 (continued fraction). - Harry J. Smith, May 07 2009
Cf. A002580 (cube root of 2).

Programs

  • Mathematica
    RealDigits[N[4^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=4^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005480.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009, with a correction made May 19 2009

Formula

Equals Product_{k>=0} (1 + (-1)^k/(3*k + 1)). - Amiram Eldar, Jul 25 2020
Equals A002580^2. - Michel Marcus, Jan 08 2022
Equals hypergeom([1/3, 1/6], [2/3], 1). - Peter Bala, Mar 02 2022

A002945 Continued fraction for cube root of 2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).

Programs

  • Magma
    ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
  • Maple
    N:= 100: # to get a(1) to a(N)
    a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
    for n from 2 to N do
      a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
      p[n+1] := a[n]*p[n] + p[n-1];
      q[n+1] := a[n]*q[n] + q[n-1];
    od:
    seq(a[i],i=1..N); # Robert Israel, Jul 30 2014
  • Mathematica
    ContinuedFraction[Power[2, (3)^-1],70] (* Harvey P. Dale, Sep 29 2011 *)
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
    

Formula

From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)

Extensions

BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024
Showing 1-2 of 2 results.