A047914 Duplicate of A005480.
1, 5, 8, 7, 4, 0, 1, 0, 5, 1, 9, 6, 8, 1, 9, 9, 4, 7, 4, 7, 5, 1, 7, 0, 5, 6, 3, 9, 2, 7, 2, 3, 0, 8, 2, 6
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1.2599210498948731647672106072782283505702514...
Digits:=100: evalf(2^(1/3)); # Wesley Ivan Hurt, Nov 12 2015
RealDigits[N[2^(1/3), 5!]] (* Vladimir Joseph Stephan Orlovsky, Sep 04 2008 *)
default(realprecision, 20080); x=2^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002580.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
default(realprecision, 100); x= 2^(1/3); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) \\ Altug Alkan, Nov 14 2015
d=4.161938184941462752390080... x-intercept: U=(2.5874..., 0) y-intercept: V=(0, 3.2599...)
(1+2^(2/3))^(3/2); evalf(%) ; # R. J. Mathar, Nov 08 2022
f[x_] := x^2 + (k*x/(x - h))^2; t = h + (h*k^2)^(1/3); h = 1; k = 2; d = N[f[t]^(1/2), 100] RealDigits[d] (* this sequence *) x = N[t] (* x-intercept; -1+4^(1/3); cf. A005480 *) y = N[k*t/(t - h)] (* y-intercept *) Show[Plot[k + k (x - h)/(h - t), {x, 0, t}], ContourPlot[(x - h)^2 + (y - k)^2 == .001, {x, 0, 4}, {y, 0, 4}], PlotRange -> All, AspectRatio -> Automatic]
polrootsreal(x^6 - 15*x^4 - 33*x^2 - 125)[2] \\ Charles R Greathouse IV, Feb 03 2025
2.8043642106509085223500381581005882709260444108....
RealDigits[(Gamma[1/3]^3)/(2^(1/3) Sqrt[3] Pi), 10, 200] (* Artur Jasinski*)
allocatemem(932245000); default(realprecision, 4080); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); for (n=1, 4000, d=floor(x); x=(x-d)*10; write("b118292.txt", n, " ", d)) \\ Harry J. Smith, Jun 20 2009
3/hypergeom([1/3,1/6],[3/2],1) \\ Charles R Greathouse IV, Aug 29 2025
1.104089513673812337649505387623...
RealDigits[N[2^(1/7), 100]][[1]] (* Vincenzo Librandi, Apr 02 2013 *) RealDigits[Surd[2,7],10,120][[1]] (* Harvey P. Dale, Sep 05 2022 *)
sqrtn(2,7) \\ Charles R Greathouse IV, Apr 15 2014
{ default(realprecision, 100); x= 2^(1/7); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 14 2015
Floor[Range[100]*(1 + 2^(2/3))] (* Paolo Xausa, Jul 09 2024 *)
0.6299605249474365823836053...
Digits := 100 ; evalf(1/2^(2/3)) ; # R. J. Mathar, Jan 16 2023
RealDigits[1/2^(2/3), 10, 128][[1]]
sqrtn(1/4,3) \\ Charles R Greathouse IV, Apr 14 2014
0.79370052598409973737585281963615413019574666394992650490414288091260825...
RealDigits[(1/2)^(1/3), 10, 200][[1]]
(1/2)^(1/3) \\ Altug Alkan, Mar 22 2016
Denominator[Convergents[Power[4, (3)^-1], 30]] (* Vincenzo Librandi, Aug 24 2013 *)
a(n) = contfracpnqn(contfrac(4^(1/3), n))[2, 1]; \\ Michel Marcus, Aug 23 2013
Numerator[Convergents[Power[4, (3)^-1], 30]] (* Vincenzo Librandi, Aug 24 2013 *)
a(n) = contfracpnqn(contfrac(4^(1/3), n))[1][1]; \\ Michel Marcus, Aug 23 2013
Comments