cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120375 Integers k such that 2*5^k - 1 is prime.

Original entry on oeis.org

4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
a(16) > 2*10^5. - Robert Price, Mar 14 2015

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), this sequence (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Magma
    [n: n in [0..2800] |IsPrime(2*5^n - 1)]; // Vincenzo Librandi, Sep 23 2018
  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ",k,n) fi od od;
  • Mathematica
    Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
  • PARI
    isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
    

Formula

a(n) = 2*A002958(n).

Extensions

More terms from Ryan Propper, Mar 28 2007
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
a(15) from Robert Price, Mar 14 2015
a(16)-a(18) from Jorge Coveiro and Tyler NeSmith, Jun 14 2020

A119591 Least k such that 2*n^k - 1 is prime.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Pierre CAMI, Jun 01 2006

Keywords

Comments

From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

Crossrefs

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Programs

  • Mathematica
    f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
  • PARI
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

Formula

From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)

Extensions

Corrected and extended by Ray Chandler, Jun 08 2006

A120376 Primes of the form 2*5^k - 1.

Original entry on oeis.org

1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
The next term has 125 digits. - Harvey P. Dale, Jan 26 2019

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), this sequence (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[2*5^Range[100]-1,PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
  • PARI
    for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018

Formula

a(n) = 2*5^A120375(n) - 1 = 2*5^(2*A002958(n)) - 1. - Jianing Song, Sep 22 2018

A319535 Primes of the form 2*6^k - 1.

Original entry on oeis.org

11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1

Views

Author

Jianing Song, Sep 22 2018

Keywords

Comments

Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.

Examples

			2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1];  // K. D. Bajpai, Nov 15 2019
  • Maple
    A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]);  # K. D. Bajpai, Nov 15 2019
  • Mathematica
    Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&]  (* K. D. Bajpai, Nov 15 2019 *)
  • PARI
    for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
    

Formula

a(n) = 2*6^A057472(n) - 1.
Showing 1-4 of 4 results.