cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002972 a(n) is the odd member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 3, 1, 5, 1, 5, 7, 5, 3, 5, 9, 1, 3, 7, 11, 7, 11, 13, 9, 7, 1, 15, 13, 15, 1, 13, 9, 5, 17, 13, 11, 9, 5, 17, 7, 17, 19, 1, 3, 15, 17, 7, 21, 19, 5, 11, 21, 19, 13, 1, 23, 5, 17, 19, 25, 13, 25, 23, 1, 5, 15, 27, 9, 19, 25, 17, 11, 5, 25, 27, 23, 29, 29, 25, 23, 19, 29, 13, 31, 31
Offset: 1

Views

Author

Keywords

Comments

It appears that the terms in this sequence are the absolute values of the terms in A046730. - Gerry Myerson, Dec 02 2010
"the n-th prime of the form 4i+1" is A005098(n). - Rainer Rosenthal, Aug 24 2022

Examples

			The 2nd prime of the form 4i+1 is 13 = 2^2 + 3^2, so a(2)=3.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    decomp2sq(p) = {my (m=(p-1)/4, r, x, limit=ceil(sqrt(p))); if (p>4 && denominator(m)==1, forprime (c=2,oo, if (!issquare(Mod(c,p)), r=c; break)); x=lift (Mod(r,p)^m); until (px%2,decomp2sq(p))[1],", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173330(n), A002144(n) - A173330(n)). - Reinhard Zumkeller, Feb 16 2010
a(n)^2 + 4*A002973(n)^2 = A002144(n); A002331(n+1) = Min(a(n),2*A002973(n)) and A002330(n+1) = Max(a(n),2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
(a(n) - 1)/2 = A208295(n), n >= 1. - Wolfdieter Lang, Mar 03 2012
a(A267858(k)) == 1 (mod 4), k >= 1. - Wolfdieter Lang, Feb 18 2016

Extensions

Better description from Jud McCranie, Mar 05 2003