A003013
E.g.f. 1 + x*exp(x) + x^2*exp(2*x).
Original entry on oeis.org
1, 1, 4, 15, 52, 165, 486, 1351, 3592, 9225, 23050, 56331, 135180, 319501, 745486, 1720335, 3932176, 8912913, 20054034, 44826643, 99614740, 220200981, 484442134, 1061158935, 2315255832, 5033164825
Offset: 0
-
With[{nn=30},CoefficientList[Series[1+x Exp[x]+x^2 Exp[2x],{x,0,nn}],x] Range[0,nn]!] (* or *) Join[{1},LinearRecurrence[{8,-25,38,-28,8},{1,4,15,52,165},30]] (* Harvey P. Dale, Nov 01 2011 *)
-
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 8,-28,38,-25,8]^n*[1;1;4;15;52])[1,1] \\ Charles R Greathouse IV, Jun 23 2020
A048482
a(n) = T(n,n), array T given by A048472.
Original entry on oeis.org
1, 3, 13, 49, 161, 481, 1345, 3585, 9217, 23041, 56321, 135169, 319489, 745473, 1720321, 3932161, 8912897, 20054017, 44826625, 99614721, 220200961, 484442113, 1061158913, 2315255809, 5033164801, 10905190401, 23555211265, 50734301185, 108984795137
Offset: 0
-
[(n^2+n)*2^(n-1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
-
LinearRecurrence[{7,-18,20,-8},{1,3,13,49},30] (* Harvey P. Dale, Feb 02 2015 *)
-
Vec(-(8*x^3-10*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014
A377574
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^2.
Original entry on oeis.org
1, 2, 14, 150, 2264, 44370, 1073772, 30998954, 1041094448, 39909978594, 1720526113460, 82422717484602, 4345035540566184, 250012958308399442, 15594180423126432428, 1048169467357831893930, 75535629221800163853152, 5810132660615400890909634, 475146028302302130377698404
Offset: 0
A386254
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.
Original entry on oeis.org
1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0
a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 17 2025
-
terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}
A386255
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.
Original entry on oeis.org
1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0
a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Jul 17 2025
-
terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}
A377582
Expansion of e.g.f. (1 + x * exp(x))^3.
Original entry on oeis.org
1, 3, 12, 51, 228, 1035, 4698, 21063, 92424, 395091, 1643790, 6664383, 26387100, 102286587, 389125506, 1455994935, 5368721808, 19541252259, 70312410774, 250408115823, 883617559140, 3092276105163, 10740749281482, 37053754521831, 127037475064728, 433073722098675
Offset: 0
A377583
Expansion of e.g.f. (1 + x * exp(x))^4.
Original entry on oeis.org
1, 4, 20, 108, 616, 3620, 21624, 129892, 778208, 4621572, 27080680, 156080804, 883304976, 4905620356, 26743018904, 143219056740, 754280089024, 3911369843204, 19995029207496, 100885122939172, 502952669726960, 2480084192804484, 12107351426245240, 58565261434872548
Offset: 0
Showing 1-7 of 7 results.