cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003013 E.g.f. 1 + x*exp(x) + x^2*exp(2*x).

Original entry on oeis.org

1, 1, 4, 15, 52, 165, 486, 1351, 3592, 9225, 23050, 56331, 135180, 319501, 745486, 1720335, 3932176, 8912913, 20054034, 44826643, 99614740, 220200981, 484442134, 1061158935, 2315255832, 5033164825
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1+x Exp[x]+x^2 Exp[2x],{x,0,nn}],x] Range[0,nn]!] (* or *) Join[{1},LinearRecurrence[{8,-25,38,-28,8},{1,4,15,52,165},30]] (* Harvey P. Dale, Nov 01 2011 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 8,-28,38,-25,8]^n*[1;1;4;15;52])[1,1] \\ Charles R Greathouse IV, Jun 23 2020

Formula

From Ralf Stephan, Sep 02 2003: (Start)
a(0) = 1, a(n) = (n^2 - n)*2^n/4 + n.
a(n) = A002999(n) - n = A001815(n) + n. (End)
O.g.f.: 1+x*(-1+4*x-8*x^2+6*x^3) / ( (x-1)^2*(2*x-1)^3 ). - R. J. Mathar, Mar 22 2011
a(n) = 8*a(n-1) - 25*a(n-2) + 38*a(n-3) - 28*a(n-4) + 8*a(n-5); a(0)=1, a(1)=1, a(2)=4, a(3)=15, a(4)=52, a(5)=165. - Harvey P. Dale, Nov 01 2011

A048482 a(n) = T(n,n), array T given by A048472.

Original entry on oeis.org

1, 3, 13, 49, 161, 481, 1345, 3585, 9217, 23041, 56321, 135169, 319489, 745473, 1720321, 3932161, 8912897, 20054017, 44826625, 99614721, 220200961, 484442113, 1061158913, 2315255809, 5033164801, 10905190401, 23555211265, 50734301185, 108984795137
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(n^2+n)*2^(n-1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
    
  • Mathematica
    LinearRecurrence[{7,-18,20,-8},{1,3,13,49},30] (* Harvey P. Dale, Feb 02 2015 *)
  • PARI
    Vec(-(8*x^3-10*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014

Formula

a(n) = 2 * A001788(n) + 1.
a(n) = (n^2+n)*2^(n-1) + 1. - Ralf Stephan, Sep 02 2003
G.f.: -(8*x^3-10*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Nov 26 2014
a(0)=1, a(1)=3, a(2)=13, a(3)=49, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Feb 02 2015

A377574 E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^2.

Original entry on oeis.org

1, 2, 14, 150, 2264, 44370, 1073772, 30998954, 1041094448, 39909978594, 1720526113460, 82422717484602, 4345035540566184, 250012958308399442, 15594180423126432428, 1048169467357831893930, 75535629221800163853152, 5810132660615400890909634, 475146028302302130377698404
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k+2, k)/((k+1)*(n-k)!));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A295238.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+2,k)/( (k+1)*(n-k)! ).
a(n) ~ 2^(5/2) * sqrt(1 + LambertW(1/4)) * n^(n-1) / (LambertW(1/4)^n * exp(n)). - Vaclav Kotesovec, Nov 02 2024

A386254 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / j!).

A386255 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.

Original entry on oeis.org

1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / (j-1)!).

A377582 Expansion of e.g.f. (1 + x * exp(x))^3.

Original entry on oeis.org

1, 3, 12, 51, 228, 1035, 4698, 21063, 92424, 395091, 1643790, 6664383, 26387100, 102286587, 389125506, 1455994935, 5368721808, 19541252259, 70312410774, 250408115823, 883617559140, 3092276105163, 10740749281482, 37053754521831, 127037475064728, 433073722098675
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3,k)/(n-k)!.
G.f.: (1-17*x+127*x^2-542*x^3+1453*x^4-2543*x^5+2973*x^6-2478*x^7+1626*x^8-648*x^9) / ((1-x)^2*(1-2*x)^3*(1-3*x)^4).

A377583 Expansion of e.g.f. (1 + x * exp(x))^4.

Original entry on oeis.org

1, 4, 20, 108, 616, 3620, 21624, 129892, 778208, 4621572, 27080680, 156080804, 883304976, 4905620356, 26743018904, 143219056740, 754280089024, 3911369843204, 19995029207496, 100885122939172, 502952669726960, 2480084192804484, 12107351426245240, 58565261434872548
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4,k)/(n-k)!.
G.f.: (1 - 36*x + 595*x^2 - 5970*x^3 + 40543*x^4 - 196752*x^5 + 702365*x^6 - 1871250*x^7 + 3740456*x^8 - 5614440*x^9 + 6362360*x^10 - 5588880*x^11 + 3979680*x^12 - 2196672*x^13 + 663552*x^14) / ((1-x)^2*(1-2*x)^3*(1-3*x)^4*(1-4*x)^5).
Showing 1-7 of 7 results.