cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003010 A Lucas-Lehmer sequence: a(0) = 4; for n>0, a(n) = a(n-1)^2 - 2.

Original entry on oeis.org

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994, 16191462721115671781777559070120513664958590125499158514329308740975788034
Offset: 0

Views

Author

Keywords

Comments

Albert Beiler states (page 228 of Recreations in the Theory of Numbers): D. H. Lehmer modified Lucas's test to the relatively simple form: If and only if 2^n-1 divides a(n-2) then 2^n-1 is a prime, otherwise it is composite. Since 2^3 - 1 is a factor of a(1) = 14, 2^3 - 1 = 7 is a prime. - Gary W. Adamson, Jun 07 2003
a(n) - a(n-1) divides a(n+1) - a(n). - Thomas Ordowski, Dec 24 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 205.

Crossrefs

Cf. A001566 (starting with 3), A003423 (starting with 6), A003487 (starting with 5).

Programs

  • Magma
    [n le 1 select 4 else Self(n-1)^2-2: n in [1..10]]; // Vincenzo Librandi, Aug 24 2015
    
  • Maple
    a := n-> if n>0 then a(n-1)^2-2 else 4 fi: 'a(i)' $ i=0..9; # M. F. Hasler, Mar 09 2007
    a := n-> simplify(2*ChebyshevT(2^n, 2), 'ChebyshevT'): seq(a(n), n=0..7);
  • Mathematica
    seqLucasLehmer[0] = 4; seqLucasLehmer[n_] := seqLucasLehmer[n - 1]^2 - 2; Array[seqLucasLehmer, 8, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n,a(n-1)^2-2,4)
    vector(10,i,a(i-1)) \\ M. F. Hasler, Mar 09 2007
    
  • Python
    from itertools import accumulate
    def f(anm1, _): return anm1**2 - 2
    print(list(accumulate([4]*8, f))) # Michael S. Branicky, Apr 14 2021

Formula

a(n) = ceiling((2 + sqrt(3))^(2^n)). - Benoit Cloitre, Nov 30 2002
More generally, if u(0) = z, integer > 2 and u(n) = a(n-1)^2 - 2 then u(n) = ceiling(c^(2^n)) where c = (1/2)*(z+sqrt(z^2-4)) is the largest root of x^2 - zx + 1 = 0. - Benoit Cloitre, Dec 03 2002
a(n) = (2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n). - John Sillcox (johnsillcox(AT)hotmail.com), Sep 20 2003
a(n) = ceiling(tan(5*Pi/12)^(2^n)). Note: 5*Pi/12 radians is 75 degrees. - Jason M. Follas (jasonfollas(AT)hotmail.com), Jan 16 2004
Sum_{n >= 0} 1/( Product_{k = 0..n} a(k) ) = 2 - sqrt(3). - Paul D. Hanna, Aug 11 2004
From Ulrich Sondermann, Sep 04 2006: (Start)
To generate the n-th number in the sequence: let x = 2^(n-1), a = 2, b = sqrt(3). Take every other term of the binomial expansion (a+b)^x times 2.
E.g., for the 4th term: x = 2^(4-1) = 8, the binomial expansion is: a^8 + 7a^7 b + 28a^6 b^2 + 56a^5 b^3 + 70a^4 b^4 + 56a^3 b^5 + 28a^2 b^6 + 7a b^7 + b^8, every other term times 2: 2(a^8 + 28a^6 b^2 + 70a^4 b^4 + 28a^2 b^6 + b^8) = 2(256 + (28)(64)(3) + (70)(16)(9) + (28)(4)(27) + 81) = 2(18817) = 37634. (End)
a(n) = 2*cosh( 2^(n-1)*log(sqrt(3)+2) ) For n > 0, a(n) = 2 + 3 * 4^n * (Product_{k=0..n-2} (a(k)/2))^2, where a(k)/2 = A002812(k) is a coprime sequence. - M. F. Hasler, Mar 09 2007
a(n) = A003500(2^n). - John Blythe Dobson, Oct 28 2007
a(n) = 2*T(2^n,2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 2 - sqrt(3). Thus 2 - sqrt(3) = 1/4 + 1/(4*14) + 1/(4*14*194) + ... as noted by Hanna above. See Liardet and Stambul. Cf. A001566, A003423 and A003487. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145503(n+1).
a(n) = 2*A002812(n). (End)
a(n+1) - a(n) = a(n)^2 - a(n-1)^2. - Thomas Ordowski, Dec 24 2016
a(n) = 2*cos(2^n * arccos(2)). - Ryan Brooks, Oct 27 2020
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 2*Product_{k = 0..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

Extensions

One more term from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Jan 18 2005