cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003057 n appears n - 1 times.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14
Offset: 2

Views

Author

Keywords

Comments

The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 2, 1 <= k <= n - 1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002
Smallest integer such that n-1 <= C(a(n),2). - Frank Ruskey, Nov 06 2007
a(n) = inverse (frequency distribution) sequence of A161680. - Jaroslav Krizek, Jun 19 2009
Taken as a triangle t(n, m) with offset 1, i.e., n >= m >= 1, this gives all positive integer limits r = r (a = m, b = A063929(n, m)) of the (a,b)-Fibonacci ratio F(a,b;k+1)/F(a,b;k) for k -> infinity. See the Jan 11 2015 comment on A063929. - Wolfdieter Lang, Jan 12 2015
Square array, T(n,k) = n + k + 2, n > = 0 and k >= 0, read by antidiagonals. Northwest corner:
2, 3, 4, 5, ...
3, 4, 5, 6, ...
4, 5, 6, 7, ...
5, 6, 7, 8, ...
... - Franck Maminirina Ramaharo, Nov 21 2018
a(n) is the pair chromatic number of an empty graph with n vertices. (The pair chromatic number of a graph G is the smallest number of colors for which G has a coloring where every vertex has two distinct colors, no adjacent vertices have a common color, and no pair of colors is repeated.) - Allan Bickle, Dec 26 2021

Examples

			(a,b)-Fibonacci ratio limits r(a,b) (see a comment above): as a triangle with offset 1 one has t(3, m) = 4 for m = 1, 2, 3. This gives the limits r(a = m,b = A063929(3, m)), i.e., r(1,12) = r(2,8) = r(3,4) = 4 (and the limit 4 appears only for these three (a,b) values). - _Wolfdieter Lang_, Jan 12 2015
		

Crossrefs

Programs

  • Magma
    [Round(Sqrt(2*(n-1)))+1: n in [2..60]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(n$(n-1),n=2..15); # Robert Israel, Jan 12 2015
  • Mathematica
    Flatten[Table[PadRight[{},n-1,n],{n,15}]] (* Harvey P. Dale, Feb 26 2012 *)
  • PARI
    t1(n)=floor(3/2+sqrt(2*n-2)) /* A003057 */
    
  • PARI
    t2(n)=n-1-binomial(floor(1/2+sqrt(2*n-2)),2) /* A002260(n-2) */
    
  • Python
    from math import isqrt
    def A003057(n): return (k:=isqrt(m:=n-1<<1))+int((m<<2)>(k<<2)*(k+1)+1)+1 # Chai Wah Wu, Jul 26 2022

Formula

a(n) = A002260(n) + A004736(n).
a(n) = A002024(n-1) + 1 = floor(sqrt(2*(n - 1)) + 1/2) + 1 = round(sqrt(2*(n - 1))) + 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003
a(n) = ceiling((sqrt(8*n - 7) + 1)/2). - Reinhard Zumkeller, Aug 28 2001, modified by Frank Ruskey, Nov 06 2007, restored by M. F. Hasler, Jan 13 2015
a(n) = A080036(n-1) - (n - 1) for n >= 2. - Jaroslav Krizek, Jun 19 2009
G.f.: (2*x^2 + Sum_{n>=2} x^(n*(n - 1)/2 + 2))/(1 - x) = (x^2 + x^(15/8)*theta_2(0,sqrt(x))/2)/(1 - x) where theta_2 is the second Jacobi theta function. - Robert Israel, Jan 12 2015

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003