A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.
1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0
Examples
G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ... T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ... The logarithm of the g.f. begins: log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
References
- K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
- G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 201 terms from R. Zumkeller)
- K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, Manuscr. Math. 79 (1993) 113-126.
- K. Alladi and B. Gordon, Schur's partition theorem, companions, refinements and generalizations, Trans. Amer. Math. Soc. 347 (1995) 1591-1608.
- G. E. Andrews, K. Alladi, B. Gordon, Generalizations and refinements of a partition theorem of Göllnitz, J. Reine Angew. Math. 460 (1995) 165-188.
- D. M. Bressoud, A combinatorial proof of Schur's 1926 partition theorem, Proc. Amer, Math. Soc. 79 (1980) 338-340.
- N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. Vol. 225 (1967), 154-190.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
- Padmavathamma, R. Raghavendra and B. M. Chandrashekara, A new bijective proof of a partition theorem of K. Alladi, Discrete Math., 237 (2004), 125-128.
- Herman P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
- Herman P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
- Herman P. Robinson, Letter to N. J. A. Sloane, Jan 1974.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Schur's Partition Theorem
- James J. Y. Zhao, A Bijective Proof of the Alladi-Andrews-Gordon Partition Theorem, Elect. J. Combin, Volume 22, Issue 1 (2015) Paper #P1.68.
- Index entries for McKay-Thompson series for Monster simple group
Crossrefs
Programs
-
Haskell
a003105 n = p 1 n where p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m -- Reinhard Zumkeller, Nov 12 2011
-
Maple
with(combinat); A:=proc(n) local i, j, t3, t2, t1; t2:=0; t1:=firstpart(n); for j from 1 to numbpart(n)+2 do t3:=1; for i from 1 to nops(t1) do if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi; od; if t3=1 then t2:=t2+1; fi; if nops(t1) = 1 then RETURN(t2); fi; t1:=nextpart(t1); od; end; # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
-
Mathematica
max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *) nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *) nmax = 63; kmax = nmax/6; s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}]; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
-
PARI
{S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))} {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)} for(n=0,60,print1(a(n),", ")) /* Paul D. Hanna, Feb 17 2013 */
Formula
G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
Extensions
More terms from Vladeta Jovovic, Jun 08 2003
Comments