cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A003234 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.

Original entry on oeis.org

3, 8, 11, 16, 19, 21, 24, 29, 32, 37, 42, 45, 50, 53, 55, 58, 63, 66, 71, 74, 76, 79, 84, 87, 92, 97, 100, 105, 108, 110, 113, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 152, 155, 160, 163, 165, 168, 173, 176, 181, 186, 189, 194, 197, 199, 202, 207
Offset: 1

Views

Author

Keywords

Comments

See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named s in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003234 n = a003234_list !! (n-1)
    a003234_list = [x | x <- [1..],
                        a003231 (a001950 x) == a001950 (a003231 x) - 1]
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Maple
    A003234 := proc(n)
        option remember;
        if n =1 then
            3;
        else
            for a from procname(n-1)+1 do
                if A003231(A001950(a)) = A001950(A003231(a))-1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003234(n),n=1..80) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    a3[n_] := Floor[n (Sqrt[5] + 3)/2];
    a5[n_] := Floor[n (Sqrt[5] + 5)/2];
    Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2);
    A003231(n) = floor(n*(sqrt(5)+5)/2);
    isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ Michel Marcus, Feb 02 2014
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A003234_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue)))
    A003234_list = list(islice(A003234_gen(),30)) # Chai Wah Wu, Sep 02 2022

Extensions

More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014

A003233 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
Offset: 1

Views

Author

Keywords

Comments

See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named r in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003233 n = a003233_list !! (n-1)
    a003233_list = [x | x <- [1..],
                        a003231 (a001950 x) == a001950 (a003231 x)]
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Mathematica
    a3221[n_] := Floor[n(5 + Sqrt[5])/2];
    a1950[n_] := Floor[n(1 + Sqrt[5])^2/4];
    Select[Range[100], a3221[a1950[#]] == a1950[a3221[#]]&] (* Jean-François Alcover, Aug 04 2018 *)
  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2);
    A003231(n) = floor(n*(sqrt(5)+5)/2);
    lista(nn) = { for(n=1, nn, if (A003231(A001950(n)) == A001950(A003231(n)), print1(n, ", ")));} \\ Michel Marcus, Feb 02 2014
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A003233_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue)))
    A003233_list = list(islice(A003233_gen(),30)) # Chai Wah Wu, Sep 02 2022

Extensions

More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014

A249115 Floor(r*n), where r = (5 - sqrt(5))/2; the Beatty complement of A003231.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91
Offset: 1

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

Let r = (5 - sqrt(5))/2 and s = (5 + sqrt(5))/2. Then 1/r + 1/s = 1, so that A249115 and A003231 are a pair of complementary Beatty sequences. Let tau = (1 + sqrt(5))/2, the golden ratio. Let R = {h*tau, h >= 1} and S = {k*(tau - 1), k >= 1}. Then A249115(n) is the position of n*(tau - 1) in the ordered union of R and S.

Crossrefs

Programs

  • Magma
    [Floor(n*(5-Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Oct 25 2014
  • Mathematica
    Table[Floor[(5 - Sqrt[5])/2*n], {n, 1, 200}]

A276867 First differences of the Beatty sequence A003231 for 2 + tau, where tau = golden ratio = (1 + sqrt(5))/2.

Original entry on oeis.org

3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 500; r = 2+GoldenRatio; b = Table[Floor[k*r], {k, 0, z}]; (* A003231 *)
    Differences[b] (* A276867 *)

Formula

a(n) = floor(n*r) - floor(n*r - r), where r = 2 + tau, n >= 1.

A003258 The number m such that c'(m) = A005206(A003231(n)), where c'(m) = A249115(m) is the m-th positive integer not in A003231.

Original entry on oeis.org

2, 3, 5, 7, 8, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 104, 105
Offset: 1

Views

Author

Keywords

Comments

This is the function named phi in the Carlitz-Scoville-Vaughan link. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Conjecture: a(n) = A078489(n) + n - 1. - Ralf Stephan, Feb 24 2004

Extensions

More terms and a definition from Eric M. Schmidt, Aug 17 2014
Definition edited by Eric M. Schmidt, Aug 07 2015

A003250 The number m such that A001950(m) = A003231(A003234(n)).

Original entry on oeis.org

4, 11, 15, 22, 26, 29, 33, 40, 44, 51, 58, 62, 69, 73, 76, 80, 87, 91, 98, 102, 105, 109, 116, 120, 127, 134, 138, 145, 149, 152, 156, 163, 167, 174, 178, 181, 185, 192, 196, 199, 203, 210, 214, 221, 225, 228, 232, 239, 243, 250, 257, 261, 268, 272, 275, 279
Offset: 1

Views

Author

Keywords

Comments

This is the function named z in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

From Eric M. Schmidt, Aug 14 2014: (Start)
a(n) = ceiling((1/phi^2) * A003231(A003234(n))), where phi is the golden ratio.
a(n) = 5*k - 1 - A003231(k), where k = A003234(n). [Cf. Theorems 4.1(ii) and 5.9(vii) in Carlitz.]
Conjecture: a(n) = floor((3-phi)*A003234(n)).
(End)

Extensions

More terms and a definition from Eric M. Schmidt, Aug 14 2014

A003252 The number m such that A003251(m) = A003231(n).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 61, 64, 67, 70, 73, 76, 79, 82, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 122, 125, 128, 131, 134, 137, 140, 143, 145, 148, 151, 154, 157, 159, 162, 165, 168, 171
Offset: 1

Views

Author

Keywords

Comments

This is the function named lambda in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003253.

Formula

a(n) = 3n - j(n), where j(n) is the maximum number such that j(n) <= A003249(n). [Carlitz, Theorem 7.15.] - Eric M. Schmidt, Aug 17 2014

Extensions

Sequence corrected and extended by, and definition from Eric M. Schmidt, Aug 17 2014

A247431 The largest integer m such that A001950(m) < A003231(n).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92
Offset: 1

Views

Author

Eric M. Schmidt, Sep 17 2014

Keywords

Comments

This is the function named K in [Carlitz].

Crossrefs

Programs

  • PARI
    a31(n) = (5*n+sqrtint(5*n^2))\2; \\ A003231
    a50(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
    a(n) = my(m=1, N=a31(n)); while(a50(m) < N, m++); m-1; \\ Michel Marcus, Nov 14 2023

A276871 Sums-complement of the Beatty sequence for sqrt(5).

Original entry on oeis.org

1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2016

Keywords

Comments

The sums-complement of a sequence s(1), s(2), ... of positive integers is introduced here as the set of numbers c(1), c(2), ... such that no c(n) is a sum s(j)+s(j+1)+...+s(k) for any j and k satisfying 1 <= j <= k. If this set is not empty, the term "sums-complement" also applies to the (possibly finite) sequence of numbers c(n) arranged in increasing order. In particular, the difference sequence D(r) of a Beatty sequence B(r) of an irrational number r > 2 has an infinite sums-complement, abbreviated as SC(r) in the following table:
r B(r) D(r) SC(r)
----------------------------------------------------
2+sqrt(1/2) A182769 A276869 A276888
sqrt(2)+sqrt(3) A110117 A276870 A276889
From Jeffrey Shallit, Aug 15 2023: (Start)
Simpler description: this sequence represents those positive integers that CANNOT be expressed as a difference of two elements of A022839.
There is a 20-state Fibonacci automaton for the terms of this sequence (see a276871.pdf). It takes as input the Zeckendorf representation of n and accepts iff n is a member of A276871. (End)

Examples

			The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...).  The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
    t = Differences[b]; (* A081427 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w];  (* A276871 *)

A242094 Complement of A003249.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Eric M. Schmidt, Aug 14 2014

Keywords

Comments

This is the function named u in [Carlitz].
First differs from A187947 at a(46)=51.

Crossrefs

Cf. A003249.

Programs

Showing 1-10 of 22 results. Next