A003277 Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1.
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Max Alekseyev, Michon's conjecture (Open Problem Garden, Aug. 2007).
- Joel E. Cohen, Conjectures about Primes and Cyclic Numbers, arXiv:2508.08335 [math.NT], 2025. See pp. 1, 2, 30.
- Keith Conrad, When are all groups of order n cyclic?, University of Connecticut, 2019.
- Peter J. Dukes and Joanna Niezen, Pairwise balanced designs of dimension three, Australasian Journal Of Combinatorics, Volume 61(1) (2015), pages 98-113.
- Paul Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. (N.S.) 12 (1948), pp. 75-78.
- Jose M. Grau, Manuel Rodríguez, A. Oller-Marcen, and Daniel Sadornil, Fermat test with gaussian base and Gaussian pseudoprimes, arXiv preprint arXiv:1401.4708 [math.NT], 2014.
- Donald J. McCarthy, A survey of partial converses to Lagrange's theorem on finite groups, Transactions of the New York Academy of Sciences, Vol. 33, No. 6, Series II (1971), pp. 586-594. See page 592.
- Gérard P. Michon, Carmichael Divisors
- Gérard P. Michon and J. K. Crump, Carmichael Multiples of Odd Cyclic Numbers (up to 10000)
- Jonathan Pakianathan and Krishnan Shankar, Nilpotent Numbers, Amer. Math. Monthly, 107, August-September 2000, 631-634.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- T. Szele, Über die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, Commentarii Mathematici Helvetici 20 (1947), pp. 265-267.
- Index entries for sequences related to groups
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a003277 n = a003277_list !! (n-1) a003277_list = map (+ 1) $ elemIndices 1 a009195_list -- Reinhard Zumkeller, Feb 27 2012
-
Magma
[n: n in [1..200] | Gcd(n, EulerPhi(n)) eq 1]; // Vincenzo Librandi, Jul 09 2015
-
Maple
select(t -> igcd(t, numtheory:-phi(t))=1, [$1..1000]); # Robert Israel, Jul 08 2015
-
Mathematica
Select[Range[175], GCD[#, EulerPhi[#]] == 1 &] (* Jean-François Alcover, Apr 04 2011 *) Select[Range@175, FiniteGroupCount@# == 1 &] (* Robert G. Wilson v, Feb 16 2017 *) Select[Range[200],CoprimeQ[#,EulerPhi[#]]&] (* Harvey P. Dale, Apr 10 2022 *)
-
PARI
isA003277(n) = gcd(n,eulerphi(n))==1 \\ Michael B. Porter, Feb 21 2010
-
Sage
# Compare A050384. def isPrimeTo(n, m): return gcd(n, m) == 1 def isCyclic(n): return isPrimeTo(n, euler_phi(n)) [n for n in (1..173) if isCyclic(n)] # Peter Luschny, Nov 14 2018
Formula
n = p_1*p_2*...*p_k (for some k >= 0), where the p_i are distinct primes and no p_j-1 is divisible by any p_i.
A000001(a(n)) = 1.
Erdős proved that a(n) ~ e^gamma n log log log n, where e^gamma is A073004. - Charles R Greathouse IV, Nov 23 2011
A000005(a(n)) = 2^k. - Carlos Eduardo Olivieri, Jul 07 2015
A008966(a(n)) = 1. - Bernard Schott, Mar 24 2022
Extensions
More terms from Christian G. Bower
Comments