A003325 Numbers that are the sum of 2 positive cubes.
2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1
References
- C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
- F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
- Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
- Nils Bruin, On powers as sums of two cubes, in Algorithmic number theory (Leiden, 2000), 169-184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
- C. G. J. Jacobi, Gesammelte Werke.
- Michael Penn, 1674 is not a perfect cube, 2020 video
- N. J. A. Sloane, Table of n, a(n) for n = 1..59562
- D. Tournes, A Glance on Indian Mathematician Srinivasa Ramanujan(1887-1920). [Text in French]
- Eric Weisstein's World of Mathematics, Cubic Number
- Index entries for sequences related to sums of cubes
Crossrefs
Programs
-
Haskell
a003325 n = a003325_list !! (n-1) a003325_list = filter c2 [1..] where c2 x = any (== 1) $ map (a010057 . fromInteger) $ takeWhile (> 0) $ map (x -) $ tail a000578_list -- Reinhard Zumkeller, Mar 24 2012
-
Mathematica
nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *) With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
-
PARI
cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
-
PARI
isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
-
PARI
T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
-
PARI
list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
-
Python
from sympy import integer_nthroot def aupto(lim): cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)] sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]]) return [s for s in sum_cubes if s <= lim] print(aupto(1343)) # Michael S. Branicky, Feb 09 2021
Extensions
Error in formula line corrected by Zak Seidov, Jul 23 2009
Comments