cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A289265 Decimal expansion of the real root of x^3 - x^2 - 2 = 0.

Original entry on oeis.org

1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.6956207695598620574163671001175353426181793882085077...
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.

Crossrefs

Cf. A078140 (includes guide to constants similar to A289260).

Programs

  • Mathematica
    z = 2000; r = 8/5;
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A289260 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289265 *)
  • PARI
    solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019

Formula

r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019

A003479 Expansion of 1/((1-x)*(1-x-2*x^3)).

Original entry on oeis.org

1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350
Offset: 0

Views

Author

Keywords

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003229.

Programs

Formula

A003476(n+1) + A077949(n)/2 - 1/2. - Ralf Stephan, Sep 25 2004
a(n+1) - a(n) = A077949(n+1). - R. J. Mathar, Mar 22 2011

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A253262 Expansion of (x + x^2 + x^3) / (1 - x + x^2 - x^3 + x^4) in powers of x.

Original entry on oeis.org

0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1
Offset: 0

Views

Author

Michael Somos, Apr 30 2015

Keywords

Comments

Cycle period is 10. - Robert G. Wilson v, Aug 02 2018

Examples

			G.f. = x + 2*x^2 + 2*x^3 + x^4 - x^6 - 2*x^7 - 2*x^8 - x^9 + x^11 + 2*x^12 + ...
		

Crossrefs

Cf. A003476.

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))); // G. C. Greubel, Aug 02 2018
  • Mathematica
    a[ n_] := {1, 2, 2, 1, 0}[[Mod[n, 5, 1]]] (-1)^Quotient[n, 5];
    CoefficientList[Series[x*(1+x)*(1-x^3)/((1-x)*(1+x^5)), {x,0,60}], x] (* G. C. Greubel, Aug 02 2018 *)
    CoefficientList[ Series[x (x^2 + x + 1)/(x^4 - x^3 + x^2 - x + 1), {x, 0, 75}], x] (* or *)
    LinearRecurrence[{1, -1, 1, -1}, {0, 1, 2, 2}, 75] (* Robert G. Wilson v, Aug 02 2018 *)
  • PARI
    {a(n) = [0, 1, 2, 2, 1][n%5 + 1] * (-1)^(n\5)};
    
  • PARI
    x='x+O('x^60); concat([0], Vec(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))) \\ G. C. Greubel, Aug 02 2018
    

Formula

Euler transform of length 10 sequence [2, -1, -1, 0, -1, 0, 0, 0, 0, 1].
G.f.: x * (1 + x) * (1 - x^3) / ((1 - x) * (1 + x^5)).
INVERT transform is A003476.
a(n) = -a(-n) = -a(n+5) for all n in Z.
a(n) = f(n) / f(1) where f(n) := tan( am( n*x, m)) where x = 0.7379409146... and m = 1.3481185591... and am() is the Jacobi amplitude function.

A078044 Expansion of (1-x)/(1+x+2*x^3).

Original entry on oeis.org

1, -2, 2, -4, 8, -12, 20, -36, 60, -100, 172, -292, 492, -836, 1420, -2404, 4076, -6916, 11724, -19876, 33708, -57156, 96908, -164324, 278636, -472452, 801100, -1358372, 2303276, -3905476, 6622220, -11228772, 19039724, -32284164, 54741708, -92821156, 157389484, -266872900
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Equals 4 * (-1)^n * A003476(n-2), n>2.
First differences of A077974.

Programs

Showing 1-4 of 4 results.