cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003482 a(n) = 7*a(n-1) - a(n-2) + 4, with a(0) = 0, a(1) = 5.

Original entry on oeis.org

0, 5, 39, 272, 1869, 12815, 87840, 602069, 4126647, 28284464, 193864605, 1328767775, 9107509824, 62423800997, 427859097159, 2932589879120, 20100270056685, 137769300517679, 944284833567072, 6472224534451829, 44361286907595735, 304056783818718320
Offset: 0

Views

Author

Keywords

Comments

The values (a(n),x(n)), n >= 2, x(n)=Fibonacci(2*n+2)*Fibonacci(2*n+3)=A081018(n+1), are the integer solutions (a,x) of the equation binomial(x+1,a+1) + binomial(x+2,a+1) = binomial(x+3,a+1). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
The values (a(n),x(n)), n >= 2 are also the integer solutions (a, x) of the equation x(a+1) = (x-a)(x-a-1) or, equivalently, binomial(x, a) = binomial(x-1, a+1). - Tomohiro Yamada, May 30 2018

Examples

			G.f. = 5*x + 39*x^2 + 272*x^3 + 1869*x^4 + 12815*x^5 + 87840*x^6 + ... - _Michael Somos_, Jun 26 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Fibonacci(2*n) * Fibonacci(2*n+3).
a(n) = Fibonacci(2*n+2)^2 - Fibonacci(2*n+1)^2. - Gary Detlefs, Oct 12 2011
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). - Vladimir Joseph Stephan Orlovsky and Vincenzo Librandi, Jan 22 2012
a(n) = -4/5 + (sqrt(5)/5 + 2/5)*(7/2 + 3*sqrt(5)/2)^n - (sqrt(5)/5 - 2/5)*(7/2 - 3*sqrt(5)/2)^n. - Antonio Alberto Olivares, May 29 2013
a(n) = -A206351(-n) for all n in Z. - Michael Somos, Jun 26 2018
From Sébastien Labbé, May 06 2022: (Start)
a(n) = Sum_{k=2..2*n+1} Fibonacci(k)^2.
a(n) = A001654(2*n+1)-1. (End)